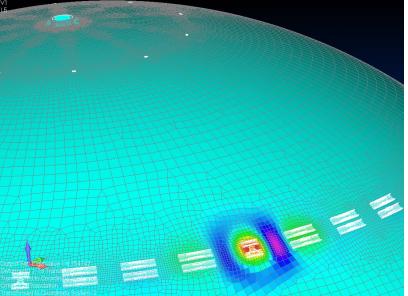
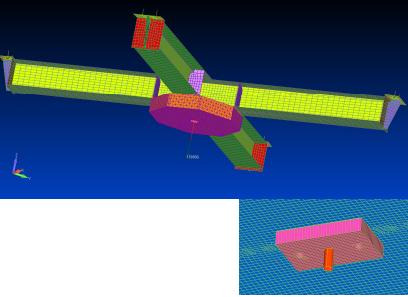
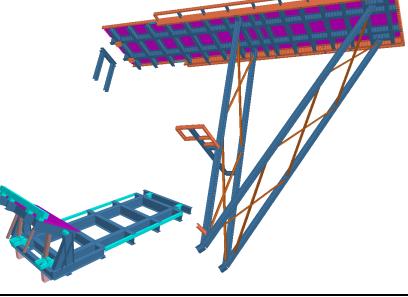
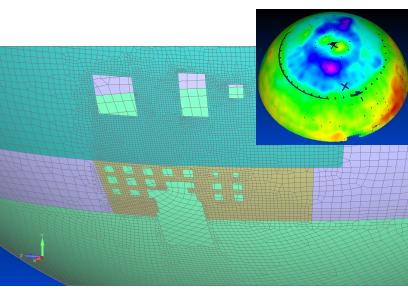
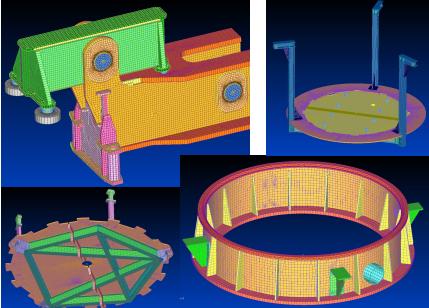
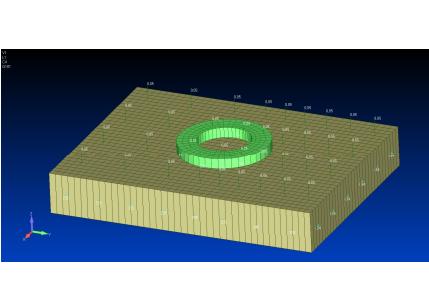
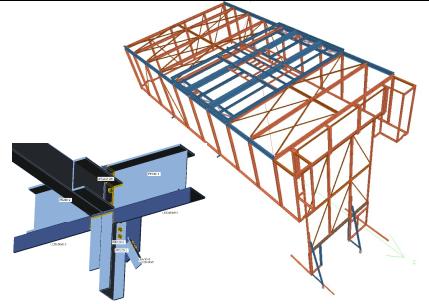
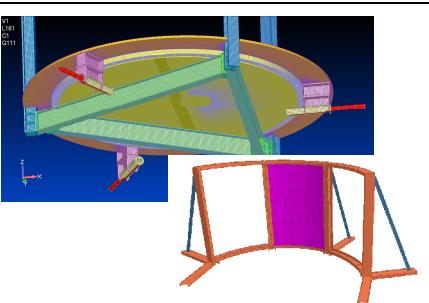
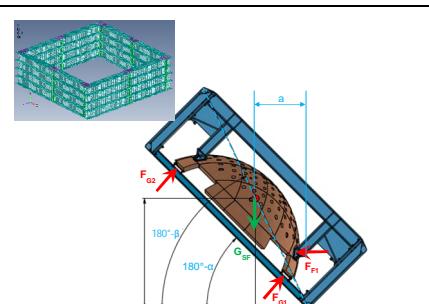


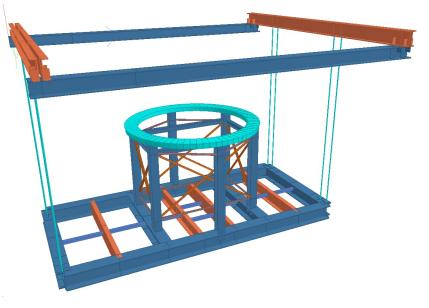
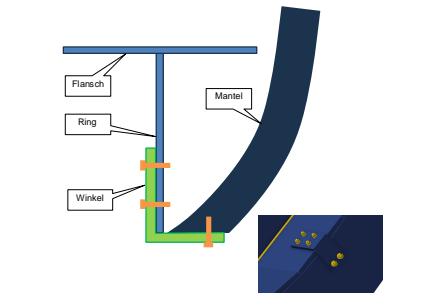
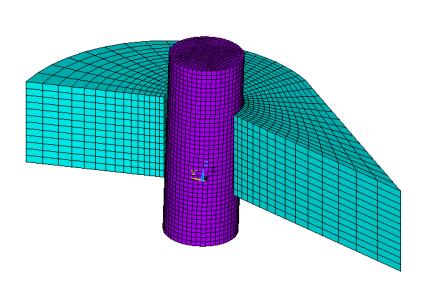
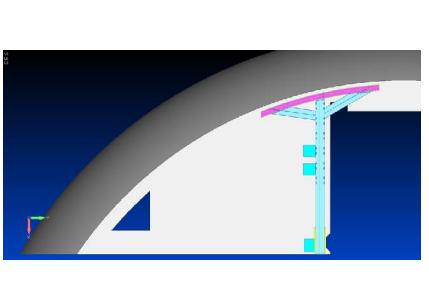

## References

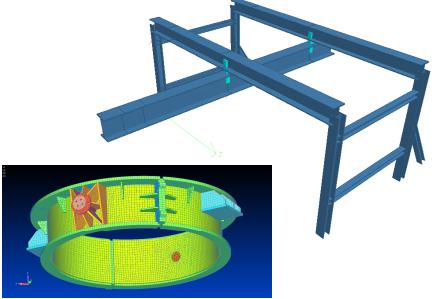
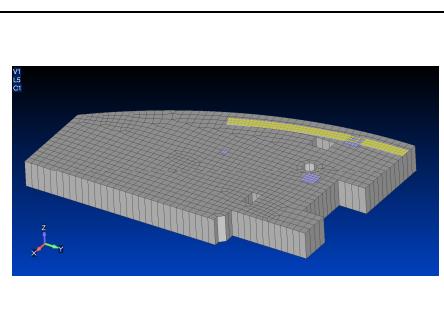
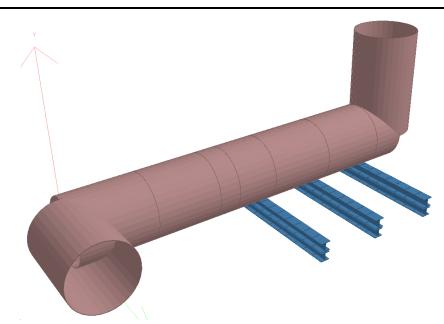
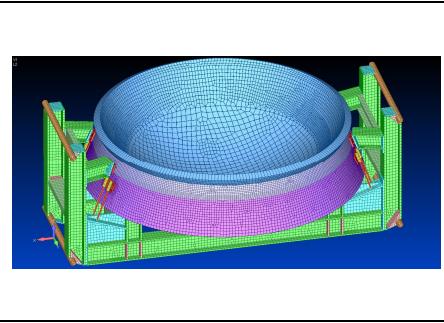
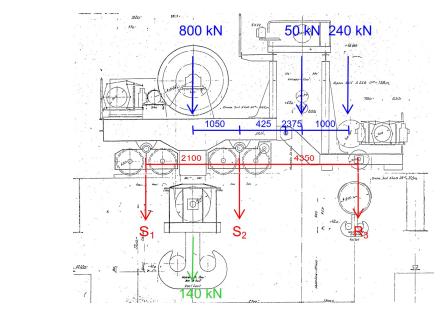


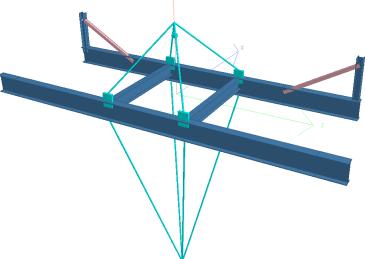





Satisfied customers are our best recommendation! Here you will find a selection of our projects, which reflect the comprehensive range of services of MF Engineering.

## Content

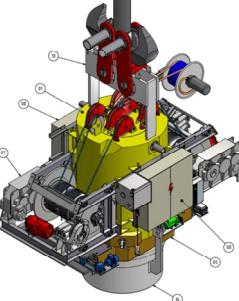
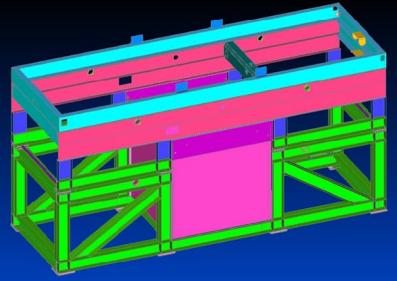
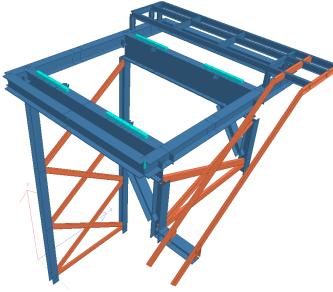





|                                                                              |    |
|------------------------------------------------------------------------------|----|
| Nuclear Technology – Dismantling .....                                       | 3  |
| <i>Dismantling of Concrete Structures</i> .....                              | 3  |
| <i>Dismantling of large-size Components</i> .....                            | 4  |
| <i>Equipment for Safe Transport of Activated Components</i> .....            | 7  |
| <i>Miscellaneous</i> .....                                                   | 8  |
| Nuclear Technology – New Development / Alterations.....                      | 10 |
| <i>EPR (European Pressurized Reactor / Evolutionary Power Reactor)</i> ..... | 10 |
| <i>Other Nuclear and Reprocessing Plants</i> .....                           | 12 |
| <i>Alterations</i> .....                                                     | 13 |
| Solid Construction .....                                                     | 14 |
| <i>Underground Construction – Assessments &amp; Expert Opinions</i> .....    | 14 |
| <i>Underground Construction – Chambers</i> .....                             | 14 |
| <i>Building Construction – Buildings</i> .....                               | 15 |
| <i>Building Construction – Small Structures</i> .....                        | 16 |
| Corrective Maintenance & Retrofit.....                                       | 16 |
| Plant Engineering – Tank Construction .....                                  | 18 |
| <i>Pressure Vessels</i> .....                                                | 18 |
| <i>Heat Exchangers</i> .....                                                 | 24 |
| <i>Support Structures for Vessels</i> .....                                  | 25 |
| <i>Tanks and Biogas Plants</i> .....                                         | 28 |
| <i>Silos</i> .....                                                           | 29 |
| Plant Engineering – Environmental Engineering .....                          | 31 |
| Plant Engineering – Structural Steelwork .....                               | 34 |
| <i>Stair Towers, Halls, Platforms</i> .....                                  | 34 |
| <i>Telecommunication and Electrical Switching Stations</i> .....             | 35 |
| <i>Pipe Bridges and Support Structures</i> .....                             | 36 |
| <i>Conversion to STAAD.Pro</i> .....                                         | 39 |
| Plant Engineering – Mechanical Engineering .....                             | 40 |
| <i>Components for Biogas and Power Plants</i> .....                          | 40 |
| <i>Support Frames and Racks</i> .....                                        | 42 |
| <i>Electrical Facilities</i> .....                                           | 46 |
| <i>Miscellaneous</i> .....                                                   | 51 |
| Plant Engineering – Pipeline Construction.....                               | 53 |
| Glass Structures .....                                                       | 57 |
| Customer Index .....                                                         | 58 |

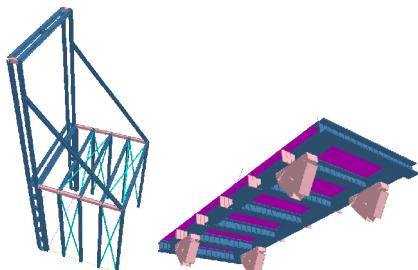




## Nuclear Technology – Dismantling






### Dismantling of Concrete Structures

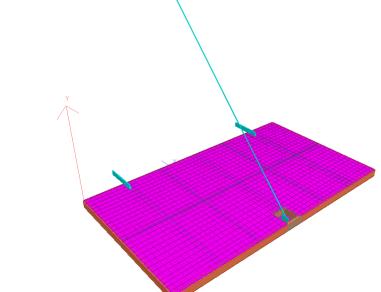
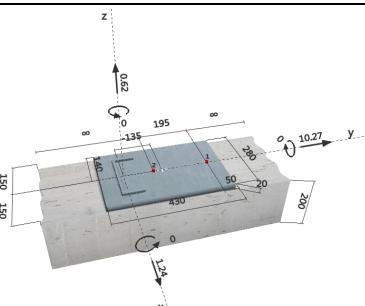

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Stade</b><br/>     Disassembly of supporting concrete parts of the reactor pool</p> <p>Customer: E.ON Anlagenservice<br/>     Service: Structural calculation of disassembly situations of weakened concrete walls and columns as well as temporary support structures made of steel for the disassembling</p>                                                                                                                 |
|   | <p><b>Nuclear Technology – Dismantling of Power Plant Stade</b><br/>     New development of a crane system (15 t) for the disassembly of concrete segments (20 t) in the reactor building</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design incl. shell buckling of the containment spherical shell (diameter 48 m, R/t=960) with pole nozzle reinforcement and brackets for the circular railway acc. to DIN EN 1993 und VDI 2230</p> |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Stade</b><br/>     New development of support structures for the assembly of a new reactor building crane</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of load attachment points at the containment spherical shell (15 t lifting load) and rails on the former crane bridge girder acc. to DIN EN 1993 and VDI 2230, application of "fluid" metal MM1018FL</p>             |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Stade</b><br/>     New development of handover platform and transport cart for the evacuation of concrete segments (20 t) from the reactor building</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of the steel structures incl. movable tilting table at the transport cart acc. to DIN EN 1993</p>                                                                          |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Stade</b><br/>     Backfitting of openings without reinforcement in the containment of the reactor building</p> <p>Customer: MAX STREICHER GmbH &amp; Co. KG<br/>     Service: Evaluation of the quality class on basis of the fabrication tolerance as well as structural proof (shell buckling) of the containment spherical shell (diameter 48 m, R/t=960) acc. to DIN EN 1993</p>                                          |

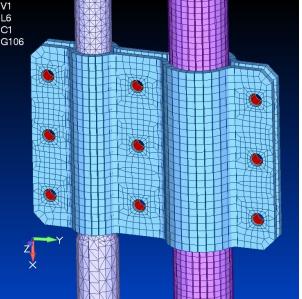
## Dismantling of large-size Components




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Neckarwestheim</b><br/>     New development of steel structures for the disassembly of the bottom part (243 t) of the reactor pressure vessel</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of several support structures acc. to DIN EN 1993 (DIN EN 13155)</p>                                                             |
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Neckarwestheim</b><br/>     Setting down (243 t) of the reactor pressure vessel in the fuel element storage pool</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural review of the existing floor of the fuel element storage pool under loading of the bottom part of the reactor pressure vessel on a skirt type support</p>                            |
|   | <p><b>Nuclear Technology – Dismantling of Power Plant Neckarwestheim</b><br/>     New development of a modular steel hall for containment of the demolition work area</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of a modular steel hall above the spent fuel storage pool incl. consideration of the assembly acc. to DIN EN 1993</p>                                          |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Neckarwestheim</b><br/>     Alteration of a working platform for the dismantling of the insulation in the reactor pit with a robot, Construction of a mock-up as testing station for the removal of the insulation</p> <p>Customer: Uniper Nuclear Services GmbH<br/>     Service: Structural calculation and design of the platform and the mock-up acc. to DIN EN 1993-1</p> |
|  | <p><b>Nuclear Technology – Dismantling Oskarshamn</b><br/>     Reinforcement of a skirt support for the bottom part (85 t) of a reactor pressure vessel as well as a turning frame for its spherical cap (26 t)</p> <p>Customer: Uniper Nuclear Services GmbH<br/>     Service: Structural Analysis and design of the reinforcements acc. to DIN EN 1993-1</p>                                                                       |


|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Obrigheim</b><br/> <b>Fabrication and assembly of a lifting system for the disassembly of the reactor pressure vessel</b></p> <p>Customer: E.ON Anlagenservice<br/>   Service: Structural calculation of a moving equipment with strand jack as well as a lifting platform with rotary table and other auxiliary structures acc. to DIN EN 13001 and DIN EN 1993-1</p> |
|    | <p><b>Nuclear Technology – Dismantling of GKN I, Neckarwestheim</b><br/> <b>Change of the dissection concept for a steam generator</b></p> <p>Customer: GNR mbH<br/>   Service: Assessment of the disassembly condition of the steam generator and structural analysis of alternative temporary securing measures during further disassembling procedures</p>                                                                |
|   | <p><b>Nuclear Technology – Dismantling of Power Plant FiR 1, Finland</b><br/> <b>Fabrication of a working bridge for the dismantling of contaminated components</b></p> <p>Customer: Uniper Nuclear Services GmbH<br/>   Service: Structural calculation and design of working bridge acc. to DIN EN 1993 and the anchorage acc. to DIN EN 1992-4</p>                                                                        |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Würgassen</b><br/> <b>Disassembly and decontamination of the dished end with a weight of approx. 48 t</b></p> <p>Customer: E.ON Anlagenservice<br/>   Service: Elasto-plastic structural calculation of the attachment points during lifting, turning and putting down of the dished end acc. to KTA 3905 und DIN 18800</p>                                            |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Lingen</b><br/> <b>Proof of an existing reinforced concrete structure under loading with a crane and strand jacks (ca. 220 t)</b></p> <p>Customer: Uniper Anlagenservice GmbH<br/>   Service: Structural calculation of the reinforced concrete ceiling and walls B300 / St IIIb acc. to DIN EN 1992 as well as review of the existing reinforcement</p>               |

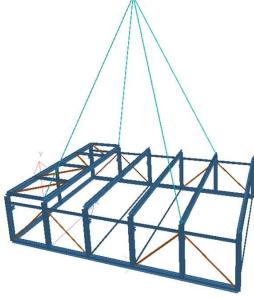
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Lingen</b><br/>     New development of steel structures for the disassembly of several steam converters (each about 170 t)</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of the steel structures (e.g. gantry crane, lifting bandage) acc. to DIN EN 1993</p>                                                                                                    |
|    | <p><b>Nuclear Technology – Dismantling of Power Plant Lingen</b><br/>     Proof of an existing structure of reinforced concrete under loads due to a crane and stand jack facility (approx. 200 t), retrofitting of the concrete ceiling with CFK lamination</p> <p>Customer: RWE Power AG<br/>     Service: Structural calculation of the ceiling of reinforced concrete B300 / St IIIb acc. to DIN EN 1992 as well as check of the existing reinforcement</p>          |
|   | <p><b>Nuclear Technology – Dismantling of KKW Mühleberg</b><br/>     Take-down of a main pipe (9,2 t) for a Separator / Heat-Exchanger in Switzerland</p> <p>Customer: Uniper Nuclear Services GmbH<br/>     Service: Structural calculation of the load transfer into the existing building (steel platform and concrete floor) when putting down the pipe on the floor for breakdown</p>                                                                               |
|  | <p><b>Nuclear Technology – Dismantling of Barsebäck (Sydkraft), Sweden</b><br/>     Fabrication of a turning frame for the dismantling of the lower part (42 t) of the reactor pressure vessel</p> <p>Customer: Uniper Anlagenservice GmbH<br/>     Service: Structural calculation and design of the turning frame in several positions of the turning process acc. to DIN EN 13155 as well as analysis of the load transfer into the building via steel structures</p> |
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Unterweser/Grafenrheinfeld</b><br/>     Check of the existing reactor building crane under the load of the steam generator to be disassembled (360 to and 300 to)</p> <p>Customer: RWE Power AG<br/>     Service: Structural check of the reactor building cranes under a load which exceeds the nominal capacity for the lifting load</p>                                                                         |

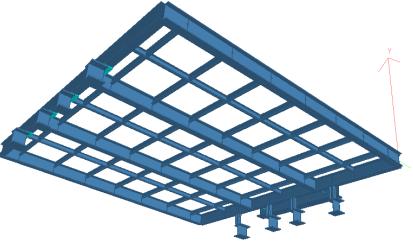
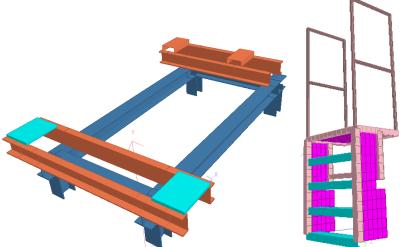
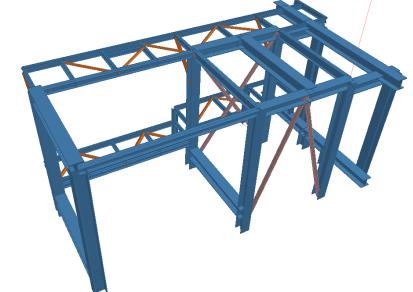
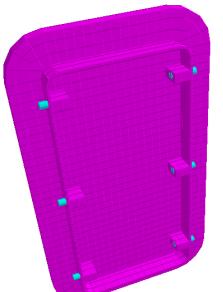


|                                                                                   |                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <b>Nuclear Technology – Dismantling of Power Plant Stade</b><br>Disassembly of the reactor building crane girders<br><br>Customer: Uniper Anlagenservice GmbH<br>Service: Structural calculation and proof of a spreader frame and load attachment points for the transport of the disassembled parts bridge girders acc. to DIN EN 1993 |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## Equipment for Safe Transport of Activated Components

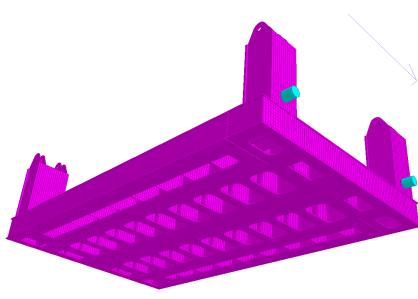
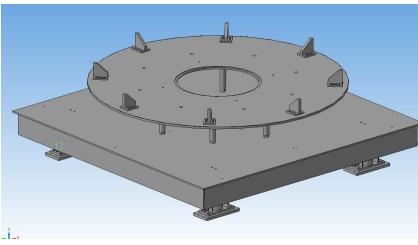
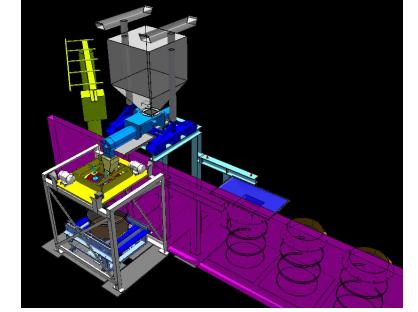
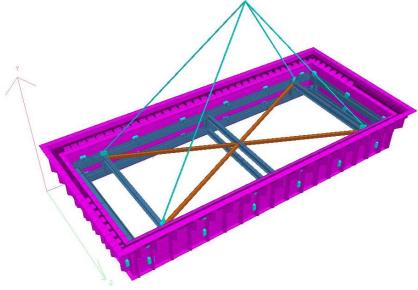
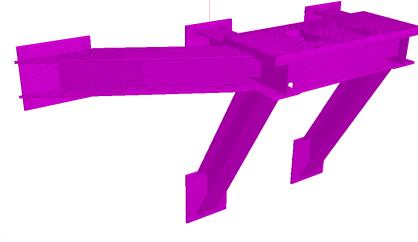
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>Nuclear Technology – Dismantling of Power Plant Isar I</b><br>Removal and packaging of contaminated material from the reactor pool<br><br>Customer: E.ON Anlagenservice<br>Service: Structural calculation of a shielding jacket and associated packaging station under consideration of different lifting conditions acc. to KTA 3902, VDI 2230, DIN 15018 and DIN 18800                                                                              |
|  | <b>Nuclear Technology – Dismantling of contaminated Material</b><br>Development of a packaging station for contaminated material in Konrad containers<br><br>Customer: EWN Entsorgungswerk für Nuklearanlagen GmbH<br>Service: Structural calculation of a packaging station under consideration of differing operation and transport situations acc. to KTA 3902, KTA 3905, VDI 2230, DIN 15018 and DIN EN 1993                                          |
|  | <b>Nuclear Technology – Dismantling of Power Plant Obrigheim</b><br>New development of a gantry with enclosure for a 120 t crane for relocating Castor vessels during the disassembly of the power plant<br><br>Customer: NKM Noell Special Cranes GmbH<br>Service: Structural calculation and design of the steel structure acc. to DIN EN 1991, KTA 3902, DIN 15018-1 and DAS 010 as well as proof of stability against overturning acc. to DIN 15019-1 |

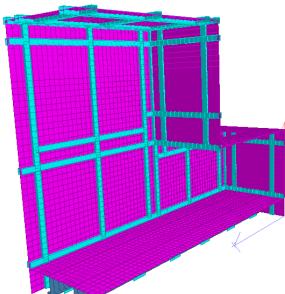
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Nuclear Technology – Dismantling of Power Plant Obrigheim</b><br/>     New development of different steel structures and evaluation of the existing building for the disassembly of the power plant</p> <p><b>Customer:</b> Babcock Noell GmbH<br/> <b>Service:</b> Structural design of an as an air lock (height 5m, length 17m) operating steel hall structure, a support frame for the lock cart (allow. gross weight approx. 60 t) as well as (partly) a bridge structure for the lock cart in the existing building (length 16m, max. span 4.9m) acc. to DIN 18800. Participation with the evaluation of the load transfer from the lock cart into the existing building.</p> |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## Miscellaneous

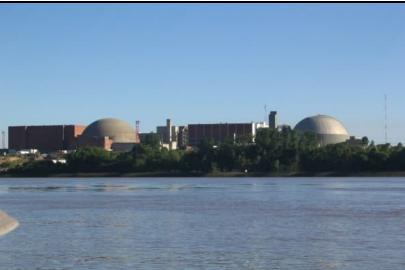
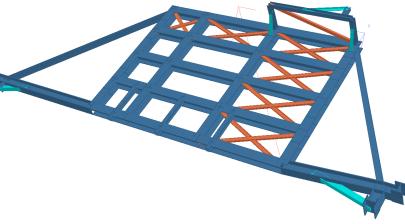
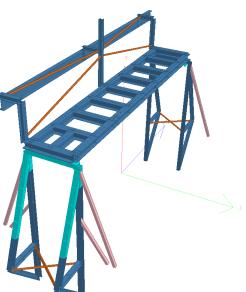
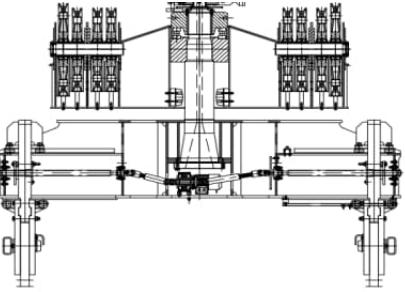




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Nuclear Technology – Dismantling of Reprocessing Plant Karlsruhe (WAK)</b><br/>     New development of a truck hatch (approx. 7m x 4m) for the disassembly of the reprocessing plant</p> <p><b>Customer:</b> Babcock Noell GmbH<br/> <b>Service:</b> Structural calculation and design of the steel structure acc. to EC3 and wall anchor plates acc. to ETAG</p> |
|  | <p><b>Nuclear Technology – Dismantling of Reprocessing Plant Karlsruhe (WAK)</b><br/>     New development of an angled sliding gate (approx. 3.3m x 4.5m x 6.0m) for the disassembly of the reprocessing plant</p> <p><b>Customer:</b> Babcock Noell GmbH<br/> <b>Service:</b> Structural calculation and design of the steel structure acc. to EC3</p>                 |
|  | <p><b>Nuclear Technology – Reprocessing Plant Karlsruhe</b><br/>     Design of different subsequent anchorings under consideration of the increased requirements in nuclear plants and problems with neighboring anchors</p> <p><b>Customer:</b> Babcock Noell GmbH<br/> <b>Service:</b> Structural calculation of the subsequent anchoring acc. to ETAG</p>            |

|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | <p><b>Nuclear Technology – Dismantling of Power Plant KKW Isar</b><br/>         Removal of 145 KFMGR pipes with disassembly safety device (special-purpose clamp) between pipe and tension rod</p> <p>Customer: Uniper Nuclear Services GmbH<br/>         Service: Structural calculation of the pre-stressed special-purpose clamp under consideration of self-weight during cut-off of the pipes</p> |
|  <p>Foto: Babcock Noell GmbH</p> | <p><b>Nuclear Technology – Dismantling of Power Plant Phadec</b><br/>         New development of vessels for the treatment of radioactive fluids for the disassembly of an Italian power plant</p> <p>Customer: Babcock Noell GmbH<br/>         Service: Participation with the structural design of pressure vessels with steel support structures acc. to EN standards</p>                           |






## Nuclear Technology – New Development / Alterations

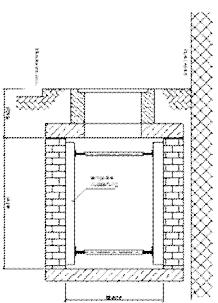
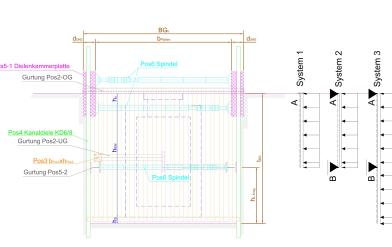

### EPR (European Pressurized Reactor / Evolutionary Power Reactor)

|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p>Quelle:<br/> <a href="http://de.wikipedia.org/wiki/Bild:EPR_OLK3_TVO_fotomont_2_Vogelperspektive.jpg">http://de.wikipedia.org/wiki/Bild:EPR_OLK3_TVO_fotomont_2_Vogelperspektive.jpg</a></p> | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – Containment Liner</b><br/>     New development of the containment building of a Finnish power plant (height 65m, diameter 46m)</p> <p>Customer: Babcock Noell Nuclear, Babcock Noell GmbH<br/>     Service: Participation with the structural design of assembly situations acc. to DIN 18800 and lining structures acc. to ASME</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>                                                                                                         | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – Pool Liner</b><br/>     New development of two structures for the reactor pools of a Finnish power plant (height 10m, base area 260m<sup>2</sup>)</p> <p>Customer: Babcock Noell Nuclear, Babcock Noell GmbH<br/>     Service: Participation with the structural design of steel structures and lining structures acc. to KTA (incl. earthquake loading)</p> <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – Pool Liner</b><br/>     New development of two steel halls for temporary enclosure of the reactor pools during the assembly period</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural calculation of the halls acc. to DIN 18800 each comprising of two parts with removable roof elements which can be lifted into the building with the crane</p> |
|                                                                                                                                                                                                                                                                                   | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – „In-Containment Refueling Water Storage Tank“ Liner</b><br/>     New development of a water tank pool for a Finnish power plant (height 4m, diameter 33m)</p> <p>Customer: Babcock Noell Nuclear, Babcock Noell GmbH<br/>     Service: Participation with the structural design of the steel structures and lining structures acc. to KTA (with earthquake loading and accidental temperature increase)</p>                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                | <p><b>Nuclear Technology - Power Plant Olkiluoto 3 – Tank Liner</b><br/>     New development of six tanks for fluids for a Finnish power plant (height 2.8-4.5m, base area 8.5-15.3m<sup>2</sup>)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Participation with the structural design of the lining structures acc. to KTA (with accidental temperature increase)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

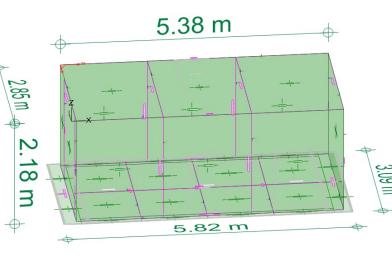




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – Personnel Air Lock</b><br/>     New development of a personnel air lock for a Finnish power plant</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural design of a temporary support structure hung up at anchor plates for the assembly of the personnel air lock (approx. 34 t) acc. to DIN 18800</p>        |
|    | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – RPV Closure Head</b><br/>     New development of technical parts on top of the reactor closure head of a Finnish power plant</p> <p>Customer: Babcock Noell Nuclear, Babcock Noell GmbH<br/>     Service: Participation with the structural design of technical steel structures acc. to KTA (with earthquake loading)</p> |
|   | <p><b>Nuclear Technology – Power Plant Olkiluoto 3 – Turbine Building</b><br/>     New development of the turbine building of a Finnish power plant</p> <p>Customer: Siemens AG, Power Generation Division<br/>     Service: Check of structural calculations of steel support structures for pipelines and tanks acc. EN 1993-1 and Finnish NA</p>                             |
|  | <p><b>Nuclear Technology – Power Plant Flamanville – Pool Lining</b><br/>     New development of a power plant in France</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural analysis of sealing doors, access doors and man holes in different pools and tanks with earthquake loading acc. to EC3</p>                                                            |
|                                                                                     | <p><b>Nuclear Technology – Power Plant Taishan – Access Doors and Sealing Doors</b><br/>     New development of a power plant in China</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural analysis of sealing doors and access doors as well as a filter exchange machine with earthquake loading</p>                                                             |

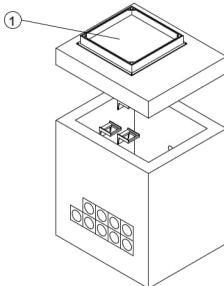
## Other Nuclear and Reprocessing Plants

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Nuclear Technology – Research Reactor ITER</b><br/>     Cargo lift platform for the nuclear fusion research reactor ITER</p> <p>Customer: NKM Noell Special Cranes GmbH<br/>     Service: Feasibility study about the carrying capacity and serviceability of the cargo lift platform for the transport of the air buffered 120 t cask acc. to KTA 3902, VDI 2230 and DIN 15018</p>                                                                                       |
|    | <p><b>Nuclear Technology – Power Plant Fangchenggang</b><br/>     New development of a rotary table for the measurement of the dose rate of loaded transport barrels</p> <p>Customer: Canberra GmbH<br/>     Service: Finite element analysis (FEA) of the rotary table and design of the American steel acc. to EC3</p>                                                                                                                                                        |
|   | <p><b>Nuclear Technology – Power Plant Fangchenggang</b><br/>     New development of a filling station for contaminated residue with silo, filling funnel, radiation protection wall and cascade for cleaning of the spiral conveyor</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural calculation of the support structure of the filling funnel and the silo platform acc. to EC3. 3D design and workshop drawings of the filling station with attachments</p> |
|  | <p><b>Nuclear Technology – Reprocessing Plant ICEDA – Locks</b><br/>     New development of a reprocessing plant in France</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural analysis of locks, plugs, bulkheads and enclosures designed for radio protection and earthquake loading acc. to EC3</p>                                                                                                                                                             |
|  | <p><b>Nuclear Technology – Reprocessing Plant ICEDA – Wall Brackets for Lifting Bulkheads</b><br/>     New development of a reprocessing plant in France</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural analysis of wall brackets (for assembly of diverter pulleys) acc. to EC3. Through this structure, bulkheads with a total weight of approx. 64 t will be lifted.</p>                                                                                   |



|                                                                                   |                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Nuclear Technology – Reprocessing Plant HOLTEC</b><br/>     New development of a reprocessing plant in the Ukraine</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural analysis and design of components inside the safety zone with earthquake loading acc. to EC3</p> |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

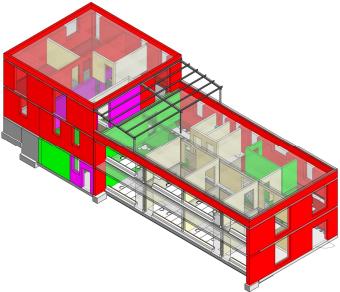
## Alterations


|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p>Quelle:<br/> <a href="http://de.wikipedia.org/wiki/Datei:Atucha_desde_el_Parana">http://de.wikipedia.org/wiki/Datei:Atucha_desde_el_Parana</a></p> | <p><b>Nuclear Technology – Power Plant Atucha II</b><br/>     Structural alteration and renovation of a power plant in Argentina</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural check of several structures due to load increase acc. to DIN 18800</p>                                                                                                                                                                                                   |
|                                                                                                                                                      | <p><b>Nuclear Technology – Power Plant Grohnde</b><br/>     Erection of a temporary load distribution frame for parts of a crane to be assembled during refurbishment activities at the reactor building crane</p> <p>Customer: NKM Noell Special Cranes GmbH<br/>     Service: Structural calculation, frequency analysis and iterative optimisation of the load distribution frame to be designed for earthquake loading acc. to DIN 15018, KTA 2201 und DIN EN 1993</p> |
|                                                                                                                                                      | <p><b>Nuclear Technology – Power Plant BKW Mühlenberg</b><br/>     New development of a sky walk for the new reactor building crane</p> <p>Customer: NKM Noell Special Cranes GmbH<br/>     Service: Structural calculation, frequency analysis and optimisation of the sky walk for very high earthquake accelerations acc. to DIN 15018, KTA 2201, KTA 3205.1, KTA 3902, DIN 18800 and DIN EN 1993</p>                                                                   |
|                                                                                                                                                      | <p><b>Nuclear Technology – Transport Container Storage Gorleben</b><br/>     Renewal of a two-lug spreader beam in the transport container storage</p> <p>Customer: NKM Noell Special Cranes GmbH<br/>     Service: Structural analysis of the top and bottom part of a two-lug spreader beam acc. to DIN 15018</p>                                                                                                                                                        |

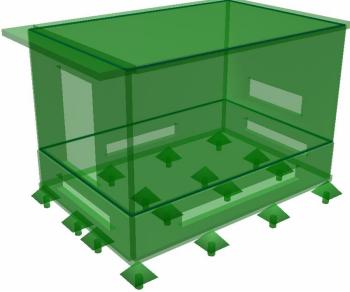
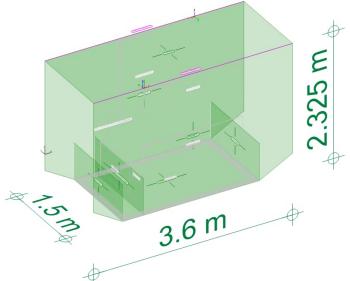


## Solid Construction

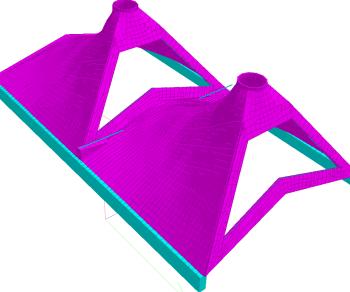
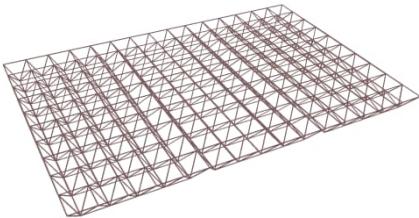
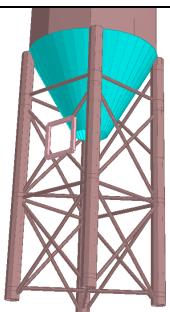
### Underground Construction – Assessments & Expert Opinions

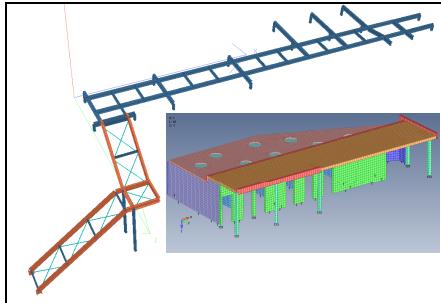

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Assessment – Engineering Structures of the Telekom</b><br/>Assessment of subterranean engineering structures</p> <p>Customer: Deutsche Telekom AG<br/>Service: Assessment of subterranean engineering structures</p>                                                                                                                                                                                                  |
|   | <p><b>Expert Opinions - Engineering Structures of the Telekom</b><br/>Compilation of expert opinions in regards to structural integrity of subterranean engineering structures</p> <p>Customer: Deutsche Telekom AG<br/>Service: Expert opinions in regards to corrective maintenance and replacement of engineering structures</p>                                                                                         |
|  | <p><b>Stability analyses for excavation support structures during the replacement of Telekom engineering structures</b><br/>Preparation of planning and stability analyses for excavation support structures</p> <p>Customer: Deutsche Telekom AG<br/>Service: Surveying, planning, structural calculation and construction supervision of the excavation pits or shoring for the replacement of engineering structures</p> |

### Underground Construction – Chambers



|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Underground – Hood Chambers for Telekom Lines</b><br/>New development of segmented partially trafficable prefabricated hood chambers with subsequent masonry as replacement for to be rehabilitated underground chambers</p> <p>Customer: Klaus Köhler Beton- und Fertigteilwerk GmbH<br/>Service: Structural calculation of elastically bedded pre-fabricated concrete structures with masonry walls loaded by earth pressure and vehicle load acc. to DIN EN 1997, DIN EN 1992 and DIN EN 1996</p> |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Underground – Cast-in-place Concrete Chamber within an existing Chamber for Telecommunications Lines</b><br/>     Construction of new cast-in-place concrete chambers (chamber within chamber) to replace structures in need of renovation</p> <p>Customer: Deutsche Telekom AG<br/>     Service: Calculation of cast-in-place concrete components (incl. reinforcement drawings) subjected to earth pressure and vehicle loads according to DIN EN 1997, DIN EN 1992 and DIN EN 1996</p> |
|    | <p><b>Underground – Multifunction Chambers for Cable Lines</b><br/>     New development of segmented partially trafficable prefabricated chambers for underground assembly</p> <p>Customer: Klaus Köhler Beton- und Fertigteilwerk GmbH<br/>     Service: Structural calculation and design of elastically bedded prefabricated concrete structures loaded by earth pressure and vehicle load acc. to DIN EN 1997 and DIN EN 1992</p>                                                           |
|   | <p><b>Underground – Prefabricated Ceilings for Cable Chambers</b><br/>     New development of segmented partially trafficable prefabricated ceilings for underground chambers of Telekom</p> <p>Customer: Klaus Köhler Beton- und Fertigteilwerk GmbH<br/>     Service: Structural calculation and design of prefabricated ceilings supported by concrete or masonry walls under vehicle loads acc. to DIN EN 1997 and DIN EN 1992</p>                                                          |
|  | <p><b>Underground – Prefabricated Chambers for Deutsche Bahn</b><br/>     New development of segmented prefabricated chambers for running cables near the train tracks of Deutsche Bahn</p> <p>Customer: Mönninghoff GmbH &amp; Co. KG<br/>     Service: Structural calculation and design of concrete chambers under earth pressure and vehicle loading acc. to DIN EN 1997 and DIN EN 1992</p>                                                                                                |




## Building Construction – Buildings


|                                                                                     |                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Building – Office Building in the County of Würzburg</b><br/>     New development of three level office building</p> <p>Customer: Research Engineers GmbH<br/>     Service: Structural calculation and design of the office building made of cast-in-place concrete and some masonry walls acc. to DIN EN 1992 and DIN EN 1996</p> |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

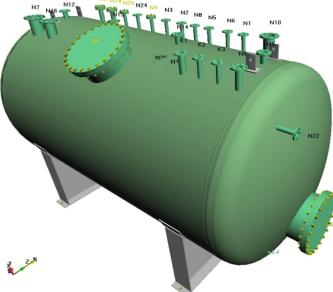
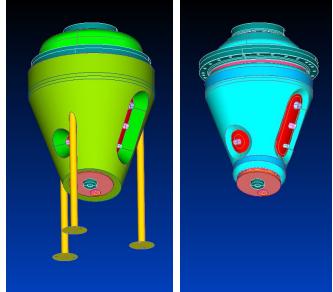
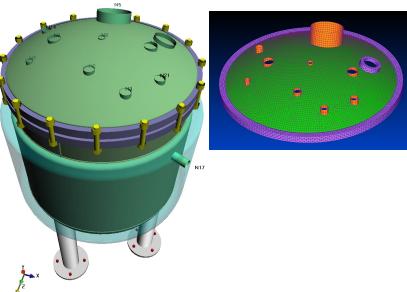
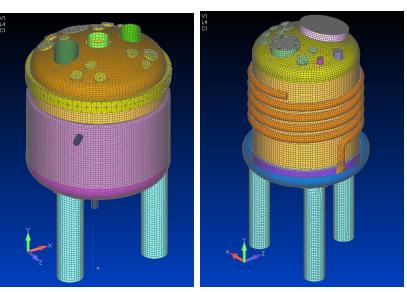
## Building Construction – Small Structures

|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Small Structure – Communication Hub Moabit</b><br/>     New development of a concrete station on strip foundations made of prefabricated concrete parts</p> <p>Customer: Klaus Köhler Beton- und Fertigteilwerk GmbH<br/>     Service: Structural calculation and design of the prefabricated structure as well as the required foundation acc. to DIN EN 1992</p>                                   |
|  | <p><b>Small Structure – Compact Station for Transformers</b><br/>     Design of elastically bedded concrete stations made of prefabricated concrete parts to be assembled all over Germany</p> <p>Customer: Klaus Köhler Beton- und Fertigteilwerk GmbH<br/>     Service: Compilation of a standardised structure for the compact station under blast load incl. assembly analysis acc. to DIN EN 1992</p> |

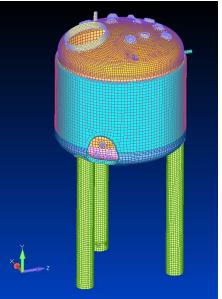
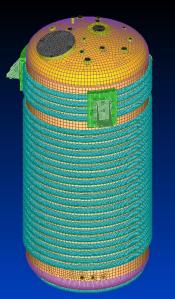
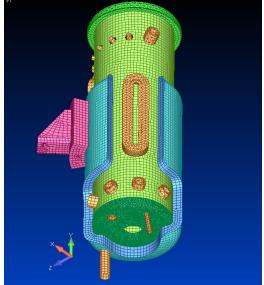
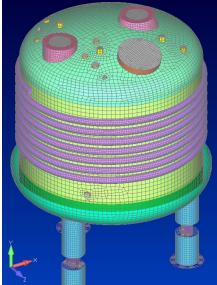
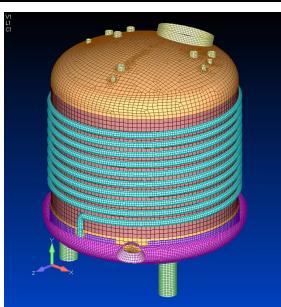
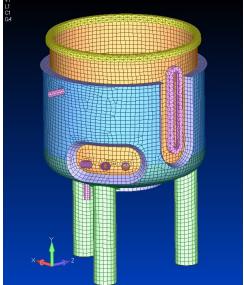
## Corrective Maintenance & Retrofit

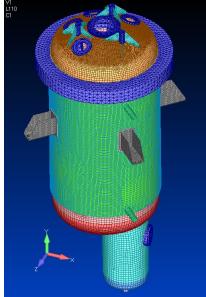
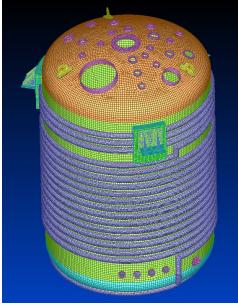
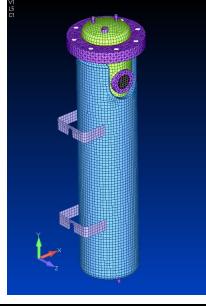
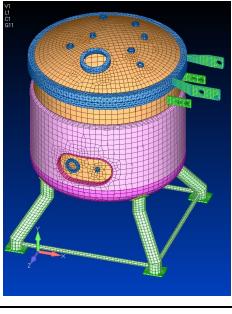
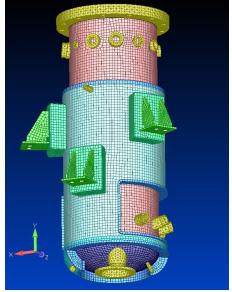
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Corrective Maintenance – Concrete Shell Roof Rexroth</b><br/>     Reinforcement of an existing concrete shell roof structure of a factory building in Unterfranken, Germany</p> <p>Customer: Ingenieurbüro Ruf/Bosch Rexroth AG<br/>     Service: Structural analysis of the existing and retrofitted structure incl. subsequent tendons acc. to DIN 1045</p>                |
|  | <p><b>Corrective Maintenance – Roof of a Gymnasium</b><br/>     Corrective maintenance of roof of a gymnasium (approx. 30 x 44.5 m span)</p> <p>Customer: Ingenieurbüro Ruf<br/>     Service: Structural calculation of the existing Mero spatial framework under several new load situations as well as structural evaluation of possible concepts for corrective maintenance</p> |
|  | <p><b>Corrective Maintenance – Spent Grain Storage Silo</b><br/>     Corrective maintenance of a spent grain storage silo in Ethiopia</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation of the support structure of the silo under wind and earthquake loading acc. to UBC 1997 and Eurocode 3 as well as related workshop drawings</p>           |

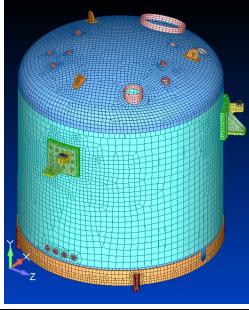
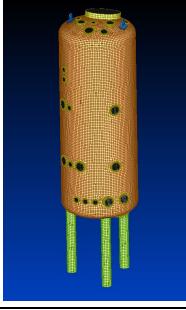
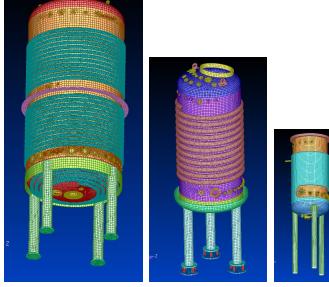
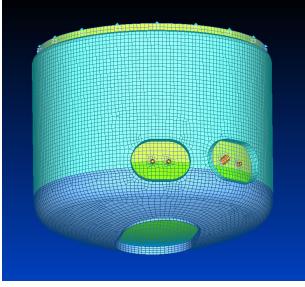
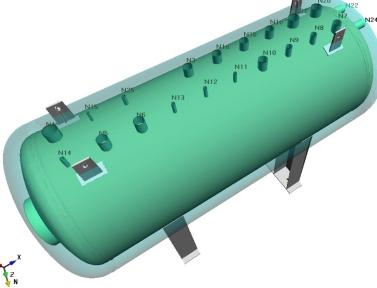
**Retrofit – Emergency Exit for Primary School in Würzburg**

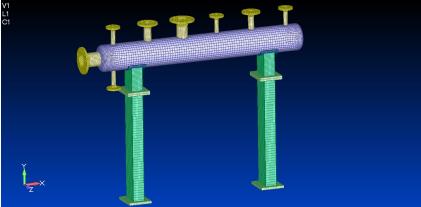
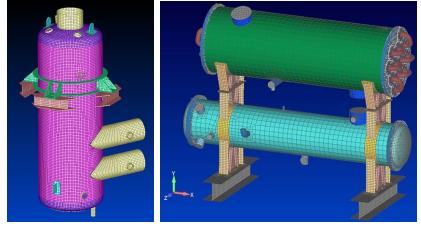
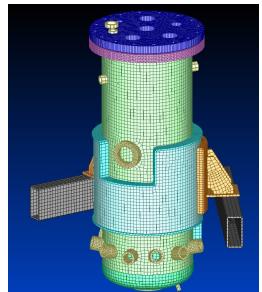
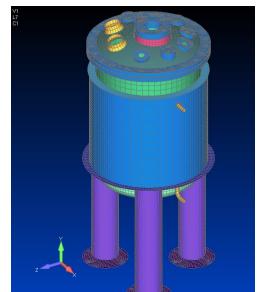
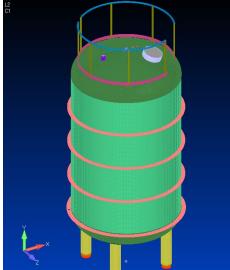





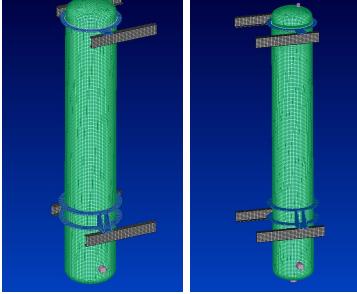
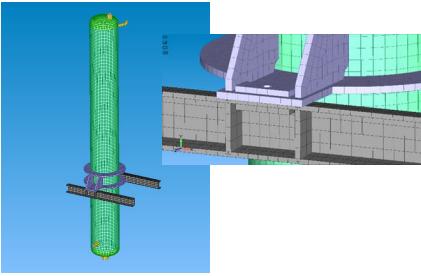
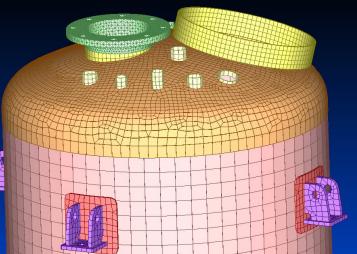
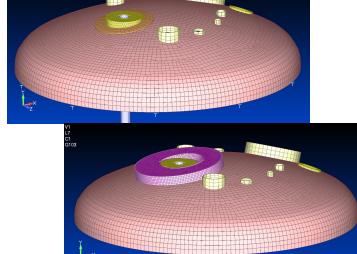
New development of a steel structure to be used as emergency exit on an adjoining building of the Steinbachtal School







Customer: City of Würzburg

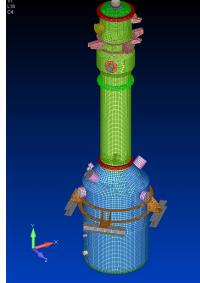
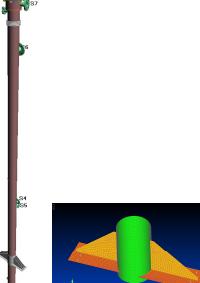
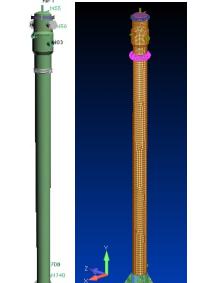
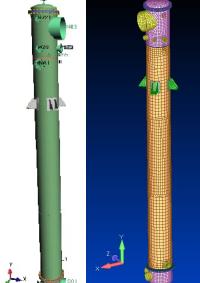





Service: Structural analysis and design of a steel bridge with staircase incl. proof of the load transfer into the concrete structure of the existing building acc. to DIN EN 1993-1 and DIN EN 1992

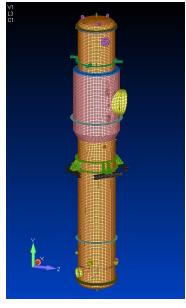
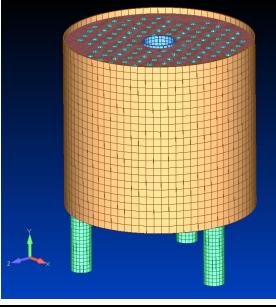
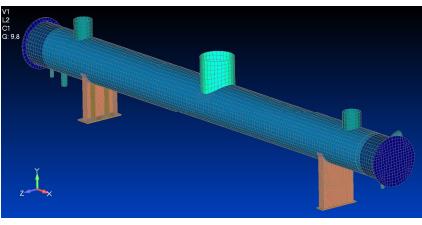





## Plant Engineering – Tank Construction






### Pressure Vessels

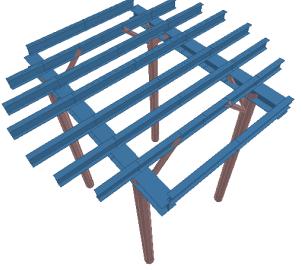
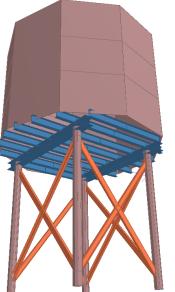




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Pharma Vessels in Solothurn (Switzerland)</b><br/>     New development of six pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of vessels on legs, saddles, skirts and brackets acc. to AD2000 Merkblätter (local checks acc. to DIN EN 13445 and PD 5500) under consideration of earthquake acc. to SIA 261</p> |
|   | <p><b>Tank Construction – Solid Collection Vessel</b><br/>     New development of a solid collection vessel</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel with jacket and flange acc. to AD2000 Merkblatt S4</p>                                                                                                                         |
|  | <p><b>Tank Construction – Pharma Vessels in Turkey</b><br/>     New development of eight pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels on legs acc. to AD2000 Merkblätter (analytic and FEA) under consideration of mixer loading</p>                                                                                    |
|  | <p><b>Tank Construction – Pharma Vessels in Turkey</b><br/>     New development of twelve pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels with full or half-pipe jackets on legs acc. to AD2000 Merkblätter (analytical and FEA)</p>                                                                                       |
|  | <p><b>Tank Construction – Pharma Vessels Marburg</b><br/>     New development of nine pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels on legs and with half-pipe jacket acc. to AD2000 Merkblätter (analytic and FEA) under consideration of mixer loading</p>                                                             |

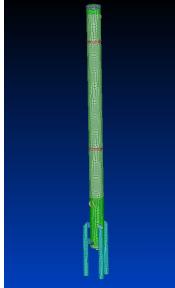
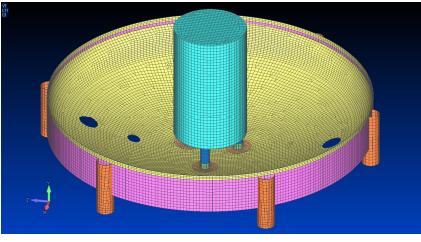
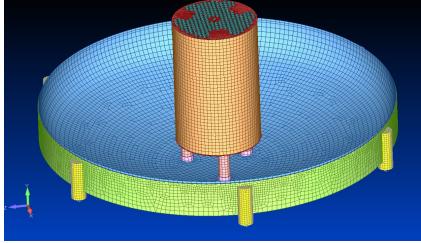
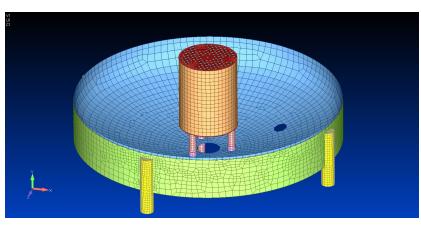
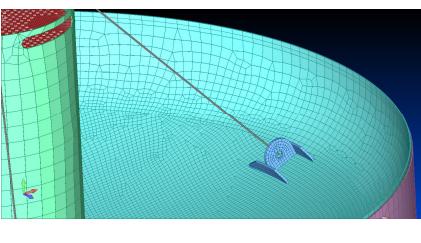
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Tank Construction – Pharma Vessels Bern</b><br/>New development of eleven pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessels on legs or brackets and with half-pipe or full jacket acc. to AD2000 Merkblätter (analytic and FEA) under consideration of mixer loading and earthquake acc. to SIA 261</p>                      |
|                                                                                    | <p><b>Tank Construction – Pharma Vessels in China</b><br/>New development of three pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessels on partially non-symmetric brackets and with machined flat head acc. to AD2000 Merkblätter under consideration of earthquake acc. to GB50011</p>                                              |
|                                                                                   | <p><b>Tank Construction – Preparation Vessel in Turkey</b><br/>New development of a Preparation Vessel</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessel on legs and with half-pipe jacket using a novel support structure acc. to AD2000 Merkblätter (analytic and FEA) under consideration of mixer loading and earthquake acc. to TBDY 2018</p> |
|                                                                                  | <p><b>Tank Construction – Preparation Vessel in Oslo</b><br/>New development of a Preparation Vessel</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessel on legs and with half-pipe jacket and an optimised support structure acc. to AD2000 Merkblätter under consideration of earthquake acc. to DIN EN 1998</p>                                   |
|                                                                                  | <p><b>Tank Construction – Intermediate Tank in Biberach</b><br/>New development of an Intermediate Tank</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessel on legs and with jacket and long sight glass acc. to AD2000 Merkblätter</p>                                                                                                              |

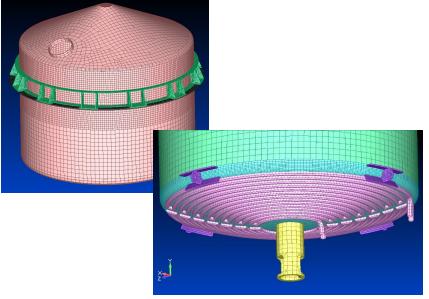
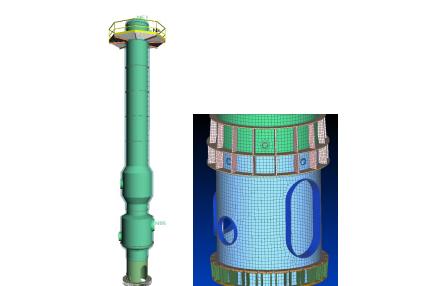
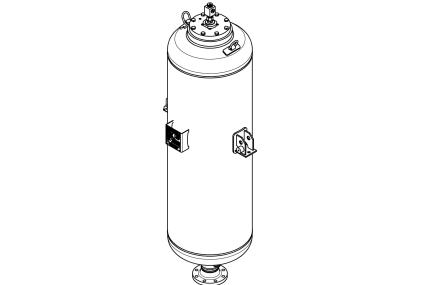
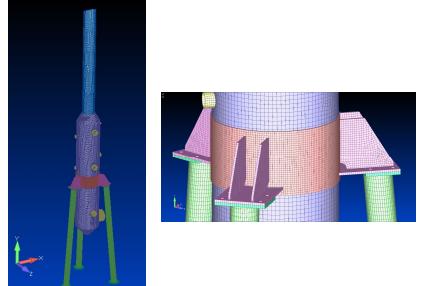




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Pharma Vessel in Williston (USA)</b><br/>     New development of a crystallizer</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel on brackets and with baffles anchored in the top head acc. to ASME 2017 (FEA) under consideration of mixer loading</p>                                                                     |
|    | <p><b>Tank Construction – Pharma Vessel in Kankakee (USA)</b><br/>     New development of two pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels on brackets and with half-pipe jacket acc. to ASME 2017 (FEA) under consideration of mixer loading and earthquake acc. to ASCE 7-10 as well as fatigue acc. to AD2000 Merkblatt S2</p> |
|   | <p><b>Tank Construction – Pharma Vessel in India</b><br/>     New development of three pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of partially non-symmetric on brackets supported vessels acc. to AD2000 Merkblätter under consideration of earthquake acc. to IS 1893</p>                                                                    |
|  | <p><b>Tank Construction – Mobile Pharma Vessels</b><br/>     New development of four mobile pharma vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the mobile vessels acc. to AD2000 Merkblätter under consideration of mixers</p>                                                                                                                      |
|  | <p><b>Tank Construction – Pharma Vessel in Janesville, WI, USA</b><br/>     New development of two fermenters and two bio reactors on brackets or legs</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof (stress and fatigue) of the vessels acc. to ASME BPVC 2023 and AD2000 Merkblätter under consideration of earthquake acc. to ASCE 7 and agitator loads</p>   |




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Pharma Vessel in Denmark</b><br/>New development of four pharma vessels for Fujifilm</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessels on brackets with calibration fixtures acc. to AD2000 Merkblätter under consideration of earthquake acc. to EN 1998-1 (NA) as well as fatigue</p>    |
|    | <p><b>Tank Construction – Pressure Vessel in Hildesheim</b><br/>New development of a Bioreactor</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessel on legs acc. to AD2000 Merkblättern incl. proof of fatigue for pressure changes</p>                                                                                 |
|   | <p><b>Tank Construction – Pressure Vessels in Wilson, NC, USA</b><br/>New development of three Bioreactors</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessels on legs acc. to ASME Sec. VIII Div. 1 / AD2000 Merkblätter incl. proof of fatigue for agitator load and pressure changes, earthquake acc. to ASCE 7</p> |
|  | <p><b>Tank Construction – Alteration of a Vessel in Australia</b><br/>Addition of two nozzles incl. opening in the jacket</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessel acc. to AD2000 Merkblätter (FEA)</p>                                                                                                      |
|  | <p><b>Tank Construction – Vessels for Brewery in Montreal, Canada</b><br/>New development of two condensate vessels</p> <p>Customer: Danz GmbH<br/>Service: Structural calculation and proof of the vessels on saddles acc. to AD2000 Merkblätter (local checks acc. to DIN EN 13445) under consideration of earthquake acc. to NBCC 2010</p>                             |

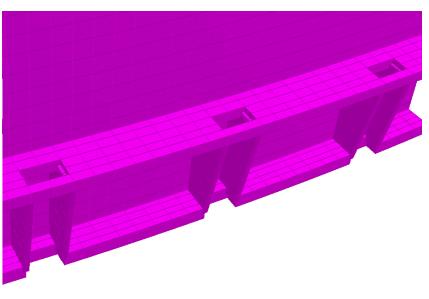
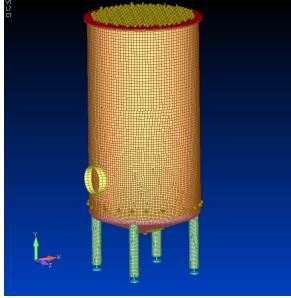
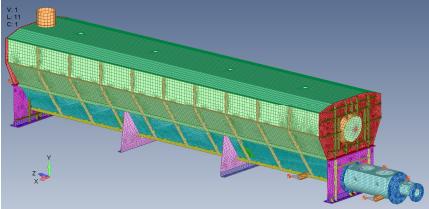
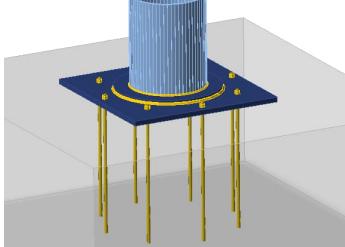
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Steam Header in Thái Bình, Vietnam</b><br/>     New development of a steam header</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels on saddles acc. to AD2000 Merkblätter under consideration of earthquake acc. to TCVN 9386</p>                                     |
|    | <p><b>Tank Construction – Brewery in Wasserburg</b><br/>     New development of six pressure vessels / heat exchangers</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels incl. unusual tube sheets (Varitube) on brackets and saddles acc. to AD2000 Merkblätter</p>                            |
|   | <p><b>Tank Construction – Fermenter for Breweries</b><br/>     Design of standard vessels for three different fermenter sizes</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels with jacket and agitator on brackets or legs under earthquake load acc. to EN 1998-1 and AD2000 Merkblätter</p> |
|  | <p><b>Tank Construction – Filling Vessel in Oslo, Norway</b><br/>     New development of a filling vessel</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel with jacket and agitator on legs under earthquake load acc. to NS EN 1998-1 and AD2000 Merkblätter</p>                               |
|  | <p><b>Tank Construction – Sterile Tank in Jeddah, Saudi-Arabia</b><br/>     New development of a sterile tank</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel with an accessible dished head, pressureless jacket and agitator on legs acc. to AD2000 Merkblätter</p>                          |

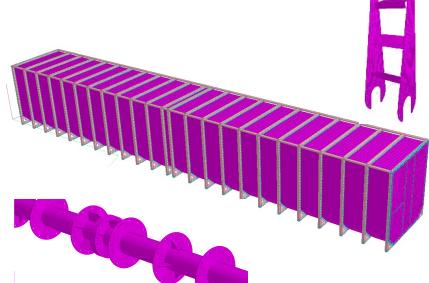
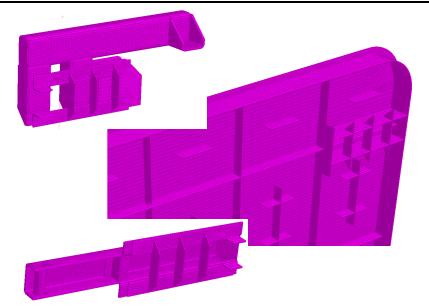


|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Pressure Vessels in Darmstadt</b><br/>     New development of two pressure vessels</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels on brackets with additional horizontal supports acc. to AD2000 Merkblätter under consideration of wind/snow acc. to DIN EN 1991, earthquake acc. to DIN EN 1998 and nozzle loads</p> |
|    | <p><b>Tank Construction – CO<sub>2</sub>-Dryer/Purifier in USA</b><br/>     New development of Dryer DN800 and Purifier DN700 in Golden, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels acc. to ASME Sec. VIII Div. 1 under earthquake load acc. to ASCE 7-22</p>                                                                  |
|   | <p><b>Tank Construction – CO<sub>2</sub>-Dryer/Purifier in USA</b><br/>     New development of Dryer and Purifier DN350 in Fort Collins, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessels acc. to ASME Sec. VIII Div. 1 under earthquake and wind load acc. to ASCE 7-22</p>                                                         |
|  | <p><b>Tank Construction – Vessel with Agitator, Germany</b><br/>     High resonant buffeting during normal operation of the chosen agitator</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Frequency analysis of the existing structure as well as of several solution approaches to reduce the arising resonant buffeting</p>                                                                   |
|  | <p><b>Tank Construction – Vessel with Agitator</b><br/>     High oscillation amplitudes during operation of the chosen agitator</p> <p>Customer: GEA Process Engineering (India) Pvt. Ltd.<br/>     Service: Analysis of the existing vessel in regards to the requirements of the manufacturer of the agitator as well as reinforcement of the dished head to reduce the arising oscillation amplitudes</p>  |






## Heat Exchangers

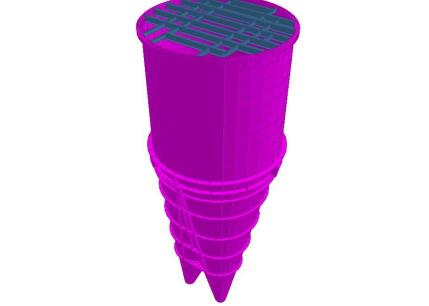
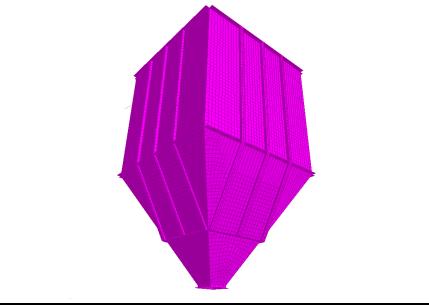




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Heat Exchanger in Frankfurt</b><br/>New development of an evaporator DN1000</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the evaporator on low brackets (analytical and FEA) acc. to AD2000 Merkblätter under consideration of wind acc. to DIN EN 1991 and nozzle loads as well as a lifting device for the lid</p>     |
|    | <p><b>Tank Construction – Heat Exchanger in Darmstadt</b><br/>New development of two heat exchangers</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the vessels on brackets with additional horizontal supports acc. to AD2000 Merkblätter under consideration of wind/snow acc. to DIN EN 1991, earthquake acc. to DIN EN 1998 and nozzle loads</p> |
|  | <p><b>Tank Construction – Heat Exchanger in Mainburg</b><br/>New development of a straight pipe heater</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the heat exchanger on brackets acc. to AD2000 Merkblätter</p>                                                                                                                                  |
|  | <p><b>Tank Construction – Heat Exchanger in Karlsruhe</b><br/>New development of an evaporator DN300</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the evaporator on low positioned brackets (analytic and FEA) acc. to AD2000 Merkblätter under consideration of earthquake acc. to EN 1998 and nozzle loads</p>                                   |
|  | <p><b>Tank Construction – Heat Exchanger in Midleton (USA)</b><br/>New development of a surface condenser DN600</p> <p>Customer: GEA Brewery Systems GmbH<br/>Service: Structural calculation and proof of the surface condenser brackets (analytic and FEA) acc. to AD2000 Merkblätter under consideration of nozzle loads</p>                                                                  |

|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Tank Construction – Heat Exchanger in Pernhofen (Austria)</b><br/>     New development of a surface condenser DN1200</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the condenser on brackets with additional horizontal supports acc. to AD2000 Merkblätter under consideration of earthquake acc. to EN 1998-1</p> |
|   | <p><b>Tank Construction – Internal Boiler of Wort Kettle</b><br/>     New development of an internal boiler of a wort kettle for a Brewery in Braunschweig, Germany</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Fatigue analysis of the internal boiler for different possible pressure ranges acc. to AD 2000 Merkblatt S2</p>                             |
|  | <p><b>Tank Construction – Brewery in Tashkent, Uzbekistan</b><br/>     New development of a vapour condenser</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the support of the vessel on saddles acc. to AD2000 Merkblätter under consideration of earthquake acc. to UBC 1997 as well as anchorage acc. to EN 1992-4</p>  |

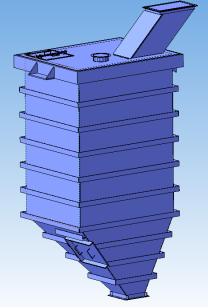




## Support Structures for Vessels



|                                                                                     |                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Tank Construction – Certification Proof for EC3</b><br/>     Certification of the manufacturer for the fabrication of the vessels according to EC3</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural sample calculation of a vessel support structure acc. to EC3</p>                                      |
|  | <p><b>Tank Construction – Vessels and Tanks for a Brewery</b><br/>     New development of a Brewery with different tank sizes and support structures in the USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural and seismic calculation of the vessels and tanks acc. to ASCE 7-05 and IBC 2009 (AISC 360)</p> |

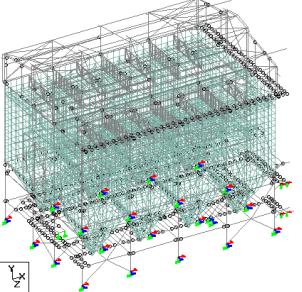
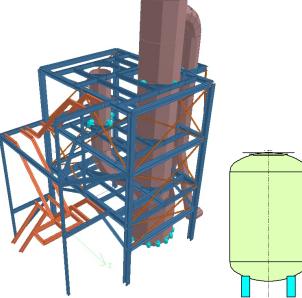
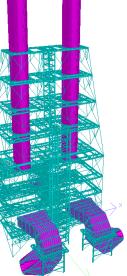
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Degassing Column for Brewery in USA</b><br/>     New development and erection of a degassing column in Columbia, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the support of a column on legs with additional horizontal brackets under earthquake loading acc. to ASCE 7-10</p>                               |
|    | <p><b>Tank Construction – Wort Kettle with Internal Boiler for Brewery</b><br/>     New development of a wort kettle for a brewery in Chilliwack, Canada</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural and seismic (NBCC) calculation of the support structure acc. to DIN EN 1993 and parts of the vessel acc. to ASME VIII 2010</p>                                  |
|   | <p><b>Tank Construction – Wort Kettle with Internal Boiler for Brewery</b><br/>     New development of a wort kettle for a brewery in Montreal, Canada</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural and seismic (NBCC) calculation of the support structure acc. to DIN EN 1993 and parts of the vessel acc. to ASME VIII 2010</p>                                    |
|  | <p><b>Tank Construction – Wort Kettle with Internal Boiler for Brewery</b><br/>     New development of a wort kettle for a brewery in Pittsburgh, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural and seismic (ASCE 7) calculation of the support structure acc. to AISC 360 and parts of the vessel acc. to ASME VIII 2019 as well as anchorage acc. to ACI 318</p> |
|  | <p><b>Tank Construction – Lifting of a Wort Kettle</b><br/>     New development of a wort kettle (12,5 t) for a brewery in Kulmbach</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Design of a suitable lifting lug und structural calculation of lifting a complete wort kettle with a crane acc. to AD2000 Merkblätter</p>                                                       |

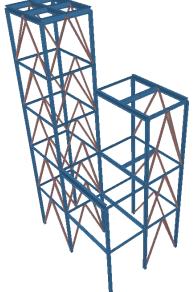
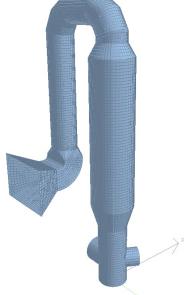



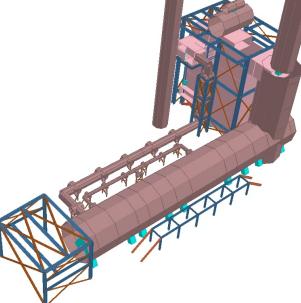
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Support and Lifting of a Mash Tun Kettle</b><br/>     New development of a Mash Tun Kettle for a Brewery in Golden, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural check of the brackets bolted to the vessel and the welded-on lifting points acc. to AD2000 Merkblätter</p>                                                                                                                   |
|    | <p><b>Tank Construction – Heat Exchanger in Denmark</b><br/>     New development of a condenser supported on a skirt with access hole and other big openings</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of vessel support, platform support and lifting points of the condenser acc. to AD2000 Merkblätter under consideration of nozzle loads, wind acc. to DIN EN 1991 and earthquake acc. to EN 1998-1</p> |
|   | <p><b>Tank Construction – Heat Exchanger Miltonduff</b><br/>     New development of a condenser supported on brackets</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of vessel support and lifting points of the condenser with rather low brackets acc. to AD2000 Merkblätter</p>                                                                                                                                |
|  | <p><b>Tank Construction – Storage Tank in Greece</b><br/>     New development of a storage tank for cooling water on brackets</p> <p>Customer: HYDAC Technology GmbH<br/>     Service: Structural calculation and proof of the vessel support for wind, snow and seismic loads acc. to DIN EN 1993 with only one bolt at each bracket</p>                                                                                                                       |
|  | <p><b>Tank Construction – QBOIL Column DN600 in Austria</b><br/>     New development of a column supported by brackets on legs</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel support via brackets on legs acc. to AD2000 Merkblätter</p>                                                                                                                                                           |


## Tanks and Biogas Plants

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Tank Construction – Petrochemical Plant in Ras Tanura</b><br/>     New development of seven containments in Saudi Arabia (diameter 8.5-35m, height 6.5-52.5m)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Participation with structural calculation of the containments acc. to API 620 and the nozzles acc. to ASME Boiler &amp; Pressure Vessel Code, Section VIII</p>                    |
|    | <p><b>Tank Construction – Water Tank in Hückelhoven</b><br/>     New development of a water tank in Hückelhoven (diameter 4,25 m, height 9,4 m)</p> <p>Customer: Steinecker GmbH<br/>     Service: Structural calculation of the water tank under wind, snow, and seismic loads as well as lifting acc. to AD2000 Merkblätter and DIN EN 1993-1 as well as analysis of buckling acc. to DIN EN 1993-1-6</p> |
|  | <p><b>Tank Construction – Bio Reactor in Helsinki, Finland</b><br/>     New development of a bio reactor</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the vessel on legs acc. to AD2000 Merkblätter, verification of the deformation of the flat head being loaded by 450 kg welded-on components</p>                                                    |
|  | <p><b>Tank Construction – Collection tank in Sendai, Japan</b><br/>     New development of a collection tank for a Brewery</p> <p>Customer: Ponndorf Anlagenbau GmbH<br/>     Service: Structural calculation, optimisation and proof of the vessel on saddles under seismic load acc. to AIJ (Article 88, Building Code Enforcement Ordinance) and EN 1993-1</p>                                           |
|  | <p><b>Tank Construction – Anchorages for Tanks in Cuba</b><br/>     New development of big tanks (seven types), a silo and a staircase tower for a brewery in Zona Mariel, Cuba</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of subsequent anchorages for tanks and a staircase tower under wind load acc. to NC 46:2017</p>                                |

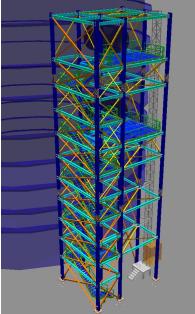
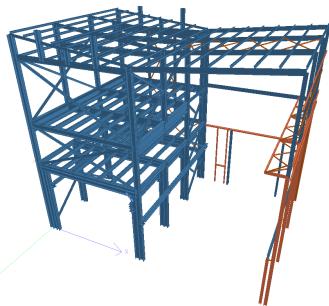
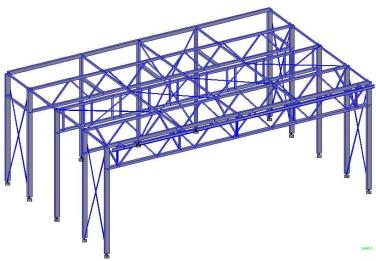
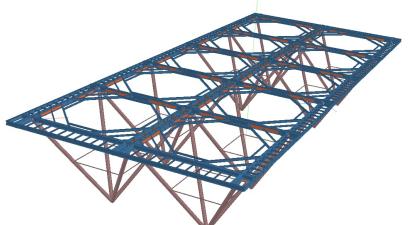
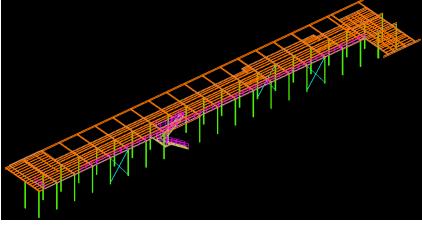



|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Tank Construction – Biogas Fermenter Tank</b><br/>     New development of a compact fermenter for biogas production. Measurements approx. 3.5m x 3.2m x 22.5m</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Structural and seismic calculation of a fermenter incl. agitator shaft acc. to EC3; consideration of very soft support and uneven assembly area</p> |
|  | <p><b>Tank Construction – Biogas Fermenter Gate</b><br/>     New development of a fermenter gate for gas tight sealing of a concrete fermenter under overpressure. Measurements approx. 4.5m x 4.5m</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Finite element analysis (FEA) of leaf, frame, locking and hinges acc. to EC3</p>                                    |

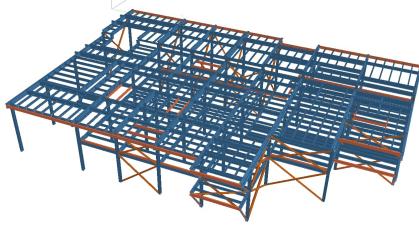
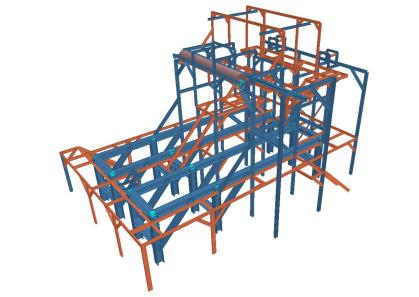
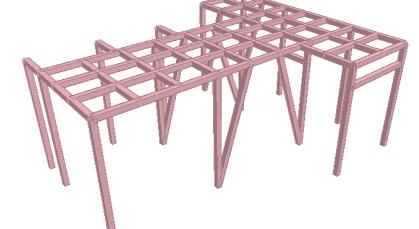


## Silos


|                                                                                     |                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Tank Construction – Slag Silo Montalieu</b><br/>     New development of a silo (height 21m, diameter max. 8m) with asymmetric funnels in France</p> <p>Customer: Fives-Cail Babcock<br/>     Service: Structural calculation and design of a slag silo supported at three support points acc. to EC3</p> |
|  | <p><b>Tank Construction – Batch Plant</b><br/>     New development of a silo (height 7m, width 4m, length 4m) in Brazil</p> <p>Customer: Ingenieurbüro Ruf<br/>     Service: Structural calculation and design of a silo supported at four support points acc. to EC3</p>                                      |
|  | <p><b>Tank Construction – Soda Silo</b><br/>     New development of a silo (height ca. 16m, diameter 10m) in Germany</p> <p>Customer: Ingenieurbüro Ruf<br/>     Service: Structural calculation and design acc. to DIN18800</p>                                                                               |

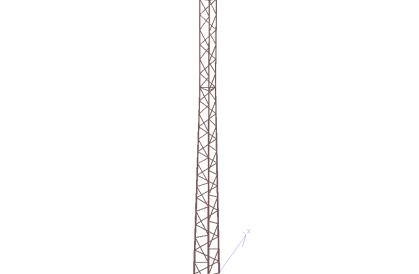
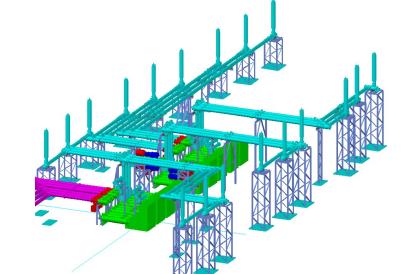
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Tank Construction – Bunker Unit</b><br/>       New development of a bunker unit comprising of 10 bunkers with four different bunker types (measurements approx. 5.6m x 22m x 4.5m)</p> <p>Customer: RCE GmbH<br/>       Service: Structural design of the bunkers acc. to DIN18800; connection design with finite element analysis (FEA)</p>                                                                      |
|  | <p><b>Tank Construction – Activated Carbon Filter in Cayuga, NY, USA</b><br/>       New development of an activated carbon filter in a skid with small crane</p> <p>Customer: Siloxa Engineering AG<br/>       Service: Structural design of the filter and the skid acc. to ASME Sec. VIII Div. 1 and AISC 360 for loading due to wind, snow and earthquake acc. to ASCE 7 as well as silo loads acc. to EN 1991-4</p> |

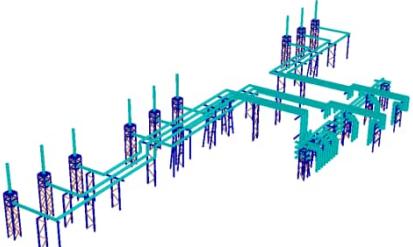
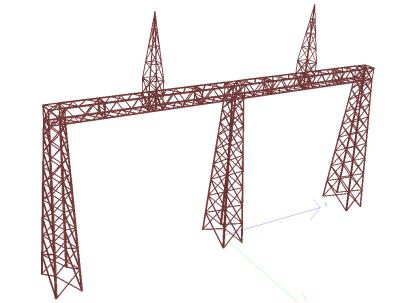
## Plant Engineering – Environmental Engineering






|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | <p><b>Environmental Engineering – Dedusting Plant in Malaysia</b><br/>     New development of a dedusting plant (height 26 m, width 21 m, length 30 m), investigation of support structure, penthouse and stair tower</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural calculation and design of the supporting steel structure of the plant inclusive connection design acc. to ASCE 7-05, UBC 1997 and AISC 360-05</p> |
|                                              | <p><b>Environmental Engineering – Purification Plant Haldor Topsoe</b><br/>     Design of a purification plant</p> <p>Customer: Luft- und Thermotechnik Bayreuth GmbH<br/>     Service: Structural calculation and design of the stair tower acc. to IBC 2009 and EN 1993 as well as a emergency water tank acc. to IBC 2009 and AD2000 bulletins</p>                                                                                    |
| <br><small>Bild: Babcock Noell GmbH</small> | <p><b>Environmental Engineering – Flue Gas Desulphurisation Plant Moorburg</b><br/>     New development of a flue gas desulphurisation plant (height 35m, diameter 16m)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Calculation of the foundation loads</p>                                                                                                                                                                    |
| <br><small>Bild: Babcock Noell GmbH</small> | <p><b>Environmental Engineering – Flue Gas Desulphurisation Plant Boxberg</b><br/>     Retrofitting of a tray in the absorber made of welded stainless steel girders and stainless steel lined structural steel girders (diameter 18m)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural calculation and design of the steel structure acc. to EC3</p>                                                                    |
|                                             | <p><b>Environmental Engineering – Flue Gas Desulphurisation Plant Isalnita</b><br/>     Subsequent check and evaluation of the structural calculation incl. the connection design of a stack framework (height 95m, base area 27.5m x 49.5m)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Check of the structural calculation and design of the steel structure incl. the implemented connections acc. to EC3</p>               |

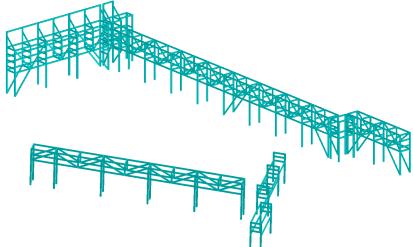
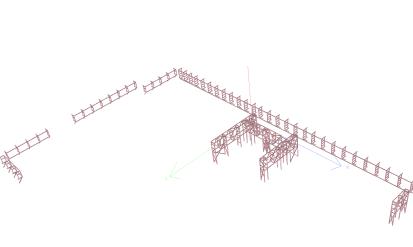



|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | <p><b>Environmental Engineering – Flue Gas Desulphurisation Plants</b><br/>       New development of several flue gas desulphurisation plants in Israel, Poland und Rumania</p> <p>Customer: Babcock Noell GmbH<br/>       Service: Calculation of decisive loads for the foundation design under consideration of earthquake loading</p>   |
| <br><small>Foto: Babcock Noell GmbH</small>   | <p><b>Environmental Engineering – Packed Bed Filter Modicer</b><br/>       New development of a flue gas purification plant in Portugal (height 25m)</p> <p>Customer: Babcock Noell GmbH<br/>       Service: Structural design of a silo-like packed bed filter with attached stack acc. to EN standards</p>                                |
| <br><small>Foto: Babcock Noell GmbH</small>  | <p><b>Environmental Engineering – Packed Bed Filter Keratec</b><br/>       New development of a flue gas purification plant (height 21m)</p> <p>Customer: Babcock Noell GmbH<br/>       Service: Structural design of a stack attached to the filter acc. to DIN</p>                                                                        |
| <br><small>Foto: Babcock Noell GmbH</small> | <p><b>Environmental Engineering – Packed Bed Filter Zeddam</b><br/>       New development of a flue gas purification plant in the Netherlands (height 17m)</p> <p>Customer: Babcock Noell GmbH<br/>       Service: Structural design of the support structure of a silo-like packed bed filter with attached stack acc. to EN standards</p> |
|                                             | <p><b>Environmental Engineering – Evaporator</b><br/>       New development of a reactor incl. evaporator in the Netherlands (height approx. 8m to 18m)</p> <p>Customer: LTB Bayreuth<br/>       Service: Structural calculation of the evaporator incl. reactor support structure acc. to EC3</p>                                          |

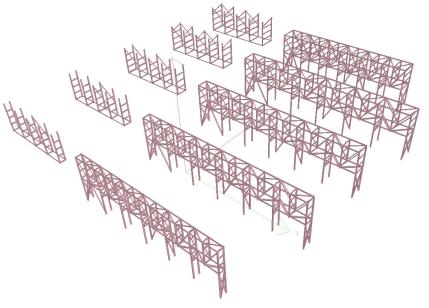
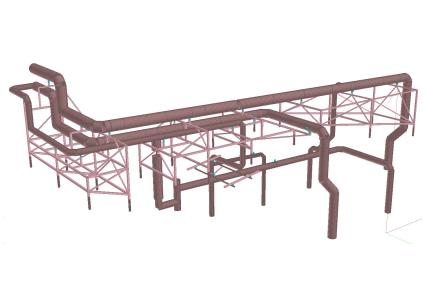
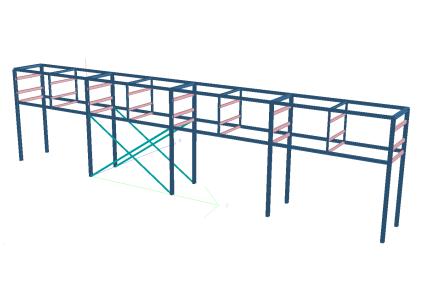
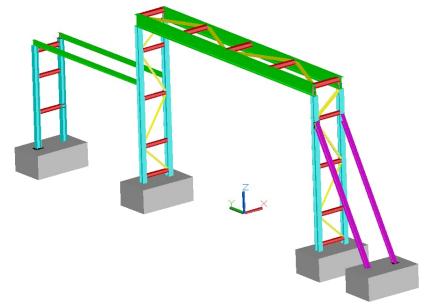
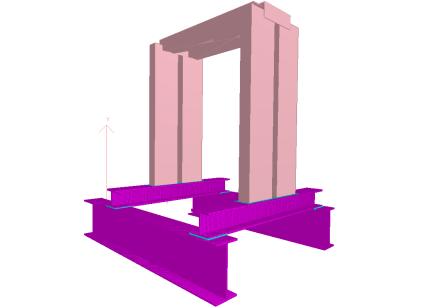
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Environmental Engineering – Incineration Plant CyPlus</b><br/><b>Idesa</b><br/>New development of an incineration plant (combustor, heat exchanger, gas purification) in Mexico</p> <p>Customer: Michaelis GmbH&amp;Co. KG<br/>Service: Structural calculation and design of different parts of the plant incl. anchoring in the foundation acc. to AISC 360 LRFD under consideration of Mexican loading codes</p> |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

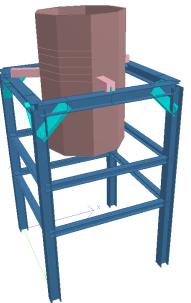
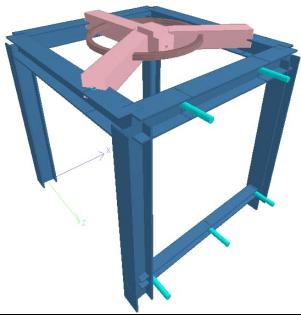
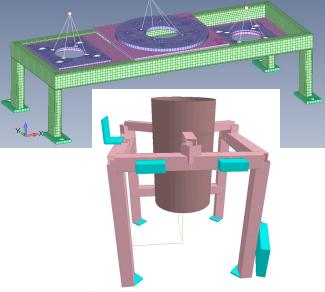
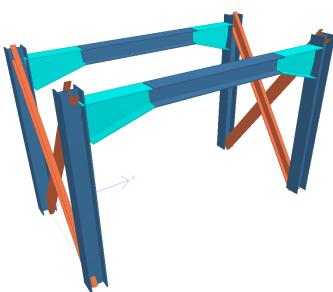
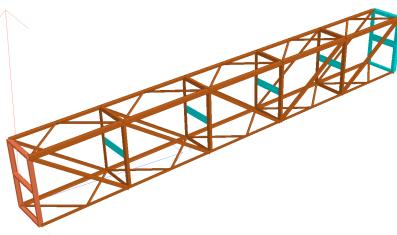


## Plant Engineering – Structural Steelwork



### Stair Towers, Halls, Platforms

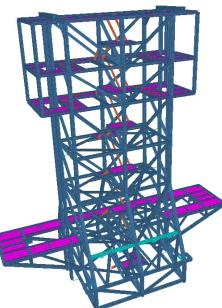
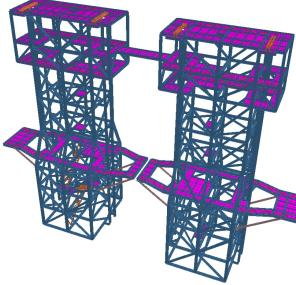
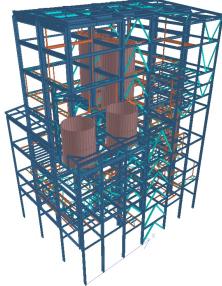
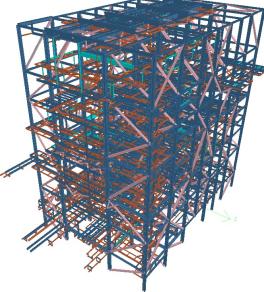
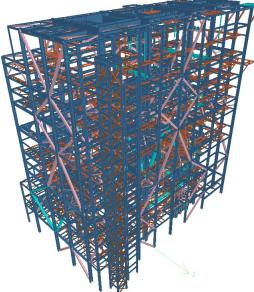
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Petrochemical Plant in Ras Tanura</b><br/>     New development of a stair tower with elevator in Saudi Arabia (measurements approx. 10m x 8m x 33m)</p> <p>Customer: Babcock Noell GmbH<br/>     Service: Structural calculation and connection design acc. to AISC 360-05 LRFD incl. design and workshop drawings</p>                 |
|   | <p><b>Plant Engineering – Foundry Rexroth</b><br/>     Survey of an existent steel hall with intermediate levels (measurements approx. 14m x 20m x 17m)</p> <p>Customer: Ingenieurbüro Ruf<br/>     Service: Structural calculation and check of the existent steel structure acc. to DIN 18800</p>                                                              |
|  | <p><b>Plant Engineering – Wood Dryer Eisenmann</b><br/>     Optimisation of the support structure for wood dryer. Variable basic structure (width 5m to 18m)</p> <p>Customer: Eisenmann SE<br/>     Service: Compilation of a variable 3D basic structure for quick preliminary structural calculations for bid proposal management. Design acc. to DIN18800</p> |
|  | <p><b>Plant Engineering – Platform Sluiskil</b><br/>     New development of a platform for air condensers (measurements 62m x 26m x 10m) in the Netherlands</p> <p>Customer: ICW GmbH/GEA Anlagentechnik<br/>     Service: Structural calculation of the steel platform with earthquake loading acc. to EC3</p>                                                  |
|  | <p><b>Plant Engineering – Painting Plant Ford Thailand</b><br/>     New development of 3800 m<sup>2</sup> of operating platforms and installation girders for a painting plant in Thailand</p> <p>Customer: Dürr Systems GmbH<br/>     Service: Structural calculation and basic design drawings of the stilted and hanging steel structure acc. to EC3</p>      |



|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Plant Engineering – Aluminium Plant Saudi Arabien</b><br/>     New development of a platform structure with three levels for the installation of the conveyance of an Aluminium plant in Saudi Arabia (measurements approx. 7.5m x 25m x 37.5m)</p> <p>Customer: NKM Noell Special Cranes<br/>     Service: Structural and seismic calculation and connection design acc. to EC3 as well as workshop drawings</p> |
|   | <p><b>Plant Engineering – Recycling Plant, USA</b><br/>     New development of a recycling plant with dryer, spiral conveyors and small cranes</p> <p>Customer: URT Umwelt- und Recyclingtechnik GmbH<br/>     Service: Structural calculation and proof of the steel structure incl. anchoring acc. to ASCE 7-16, DIN EN 1993-1 and DIN EN 1992-4</p>                                                                  |
|  | <p><b>Plant Engineering – Platform in Brewery</b><br/>     New development and assembly of a platform for filtration in Bacolod, Philippines</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the platform under seismic load acc. to NSCP-2015 / UBC 1997</p>                                                                                                           |






## Telecommunication and Electrical Switching Stations

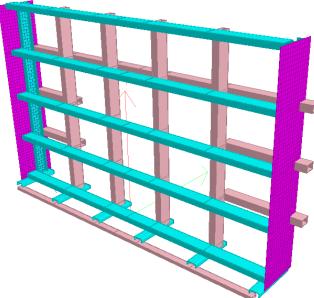
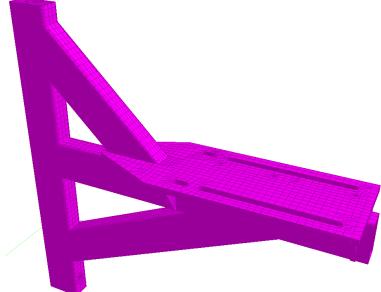
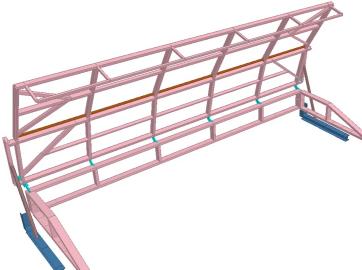
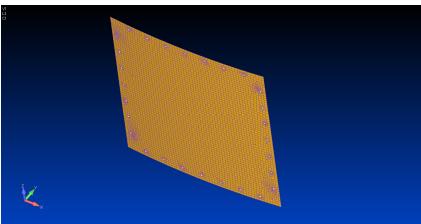
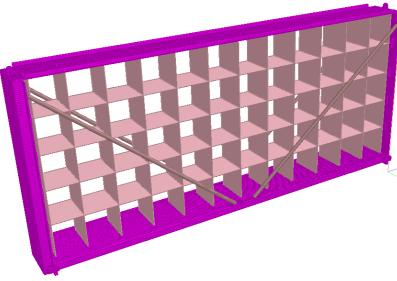





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Plant Engineering – Telecommunication Tower</b><br/>     New development of a 30m and a 45m telecommunication tower in Denmark</p> <p>Customer: Ramboll (Denmark)<br/>     Service: Participation with the structural calculation of the telecommunication towers acc. to EC3</p>                                                                                                                                       |
|  | <p><b>Plant Engineering – Gas Insulated Switchgear El Harrach</b><br/>     New development of 28 steel support structures for a gas insulated switchgear in Algeria (height: approx. 2-5m)</p> <p>Customer: ABB Schweiz AG<br/>     Service: Structural calculation and design drawings of the steel support structures acc. to AISC ASD and structural check of the gas filled Aluminium pipes (with earthquake loading)</p> |

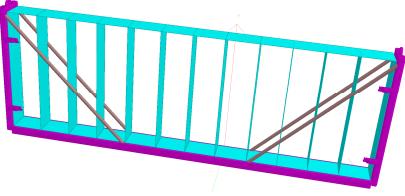
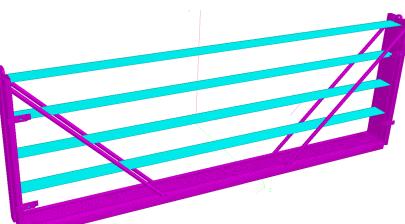
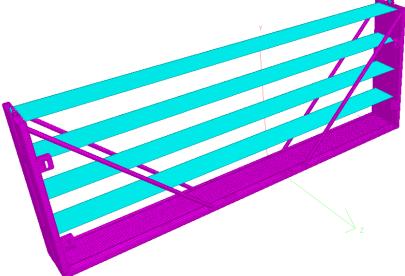
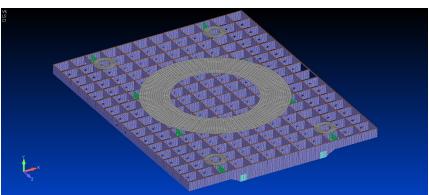
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Plant Engineering – Gas Insulated Switchgears</b><br/>     Study about the difference of methods to perform a seismic analysis – quasi-static versus response spectrum method</p> <p>Customer: ABB Schweiz AG<br/>     Service: Calculation of several das insulated switchgears (quasi-static and response spectrum method) and statistic evaluation of the calculation results in regards to the economic efficiency of the structures</p> |
|   | <p><b>Plant Engineering – Gas Insulated Switchgear Riyadh</b><br/>     New development of 85 steel support structures and pipeline bridges for a gas insulated switchgear in Saudi Arabia (height: approx. 4-11m)</p> <p>Customer: Siemens AG<br/>     Service: Structural calculation of the pipeline bridges and steel support structures acc. to AISC ASD and design drawing of the pipeline bridges</p>                                        |
|  | <p><b>Plant Engineering – 380kV Gantry Portal</b><br/>     New development of a steel gantry portal for a gas insulated switchgear in Saudi Arabia (height approx. 35.5m, length approx. 55.5m)</p> <p>Customer: Siemens AG<br/>     Service: Structural calculation/optimisation of the gantry portal acc. to ASCE-97</p>                                                                                                                         |

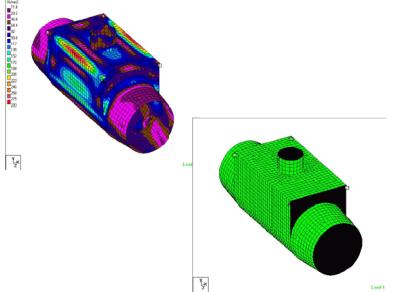
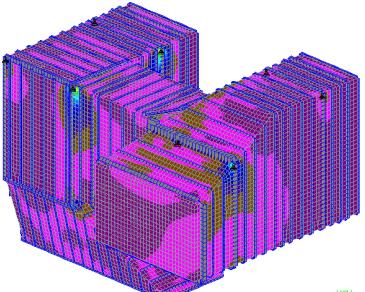
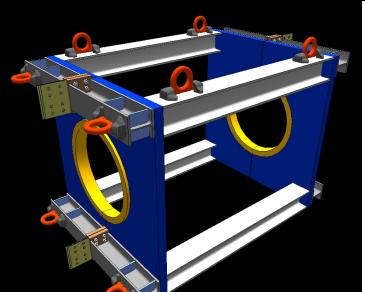





## Pipe Bridges and Support Structures

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Plant Engineering – Pipe Bridge Heineken Taiwan</b><br/>     New development of a pipe bridge for pipe and cable supports in a brewery in Taiwan</p> <p>Customer: Steinecker GmbH<br/>     Service: Determination of foundation loads for the pipe bridges under wind and earthquake load</p>                                                                                                      |
|  | <p><b>Plant Engineering – Pipe Bridges in San Diego, USA</b><br/>     New development of pipe bridges for pipes and cable trays in a Brewery in the USA</p> <p>Customer: Steinecker GmbH<br/>     Service: Structural calculation of the pipe bridges and steel support structures incl. connection details of the anchored column feet acc. to AISC 360 under wind and seismic loads acc. to ASCE 7</p> |

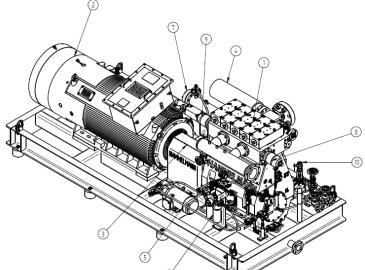
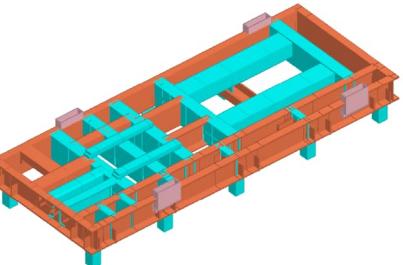
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Manufacturing Concept for Pipe Bridges</b><br/>     Compilation of a matrix of structures of standardised pipe bridges under different loading levels</p> <p>Customer: Steinecker GmbH<br/>     Service: Determination of the wind and seismic loads acc. to standards of different countries in Europe, Asia, Australia and America; structural calculation of pipe bridges acc. to AISC 360 and EN 1993-1; structuring of the results in form of a matrix</p> |
|    | <p><b>Plant Engineering – Support Structure for Steam Exhaust</b><br/>     Development of a steel support structure on the roof of a newly to be built brewhouse in Flensburg</p> <p>Customer: Steinecker GmbH<br/>     Service: Structural calculation of the steam exhaust pipes and the steel support structure under snow, wind and temperature loads acc. to DIN EN 1991-1 and DIN EN 1993-1</p>                                                                                     |
|   | <p><b>Plant Engineering – Pipe Bridge Zona Mariel, Cuba</b><br/>     New development of a pipe bridge for pipe and cable supports in a brewery in Zona Mariel, Cuba</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and optimisation of the pipe bridge incl. Detailing acc. to EC3 under wind (NC 285:2003) and seismic load (NC 46:2017)</p>                                                                                                         |
|  | <p><b>Plant Engineering – Biomethane Plant Kroppenstedt</b><br/>     New development of a pipeline bridge for pipe supports of thermal oil lines</p> <p>Customer: Lisege SE<br/>     Service: Structural calculation/optimisation and connection design acc. to EC3</p>                                                                                                                                                                                                                   |
|  | <p><b>Plant Engineering – Pipe Supports in Steam Power Plant</b><br/>     New development of pipe support structures in the steam power plant Karlsruhe, unit 8</p> <p>Customer: Lisege SE<br/>     Service: Proof of the local load transfer acc. to DIN18800 with finite element analyses (FEA)</p>                                                                                                                                                                                     |

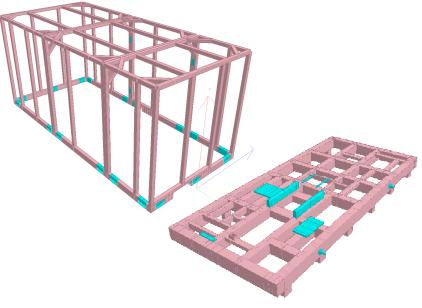
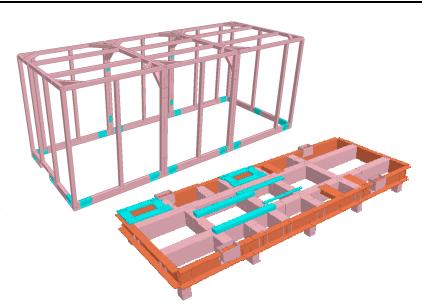
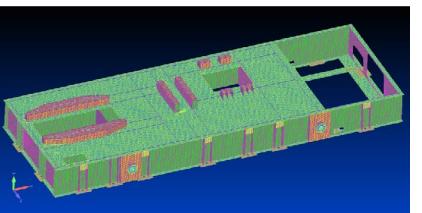
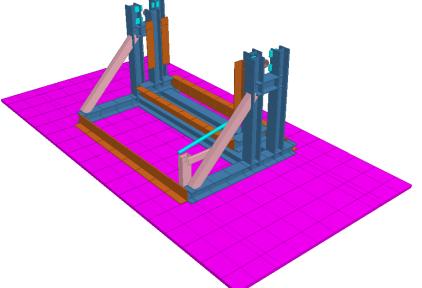
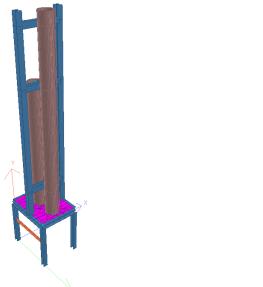





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Support Structure for a Jet Mill</b><br/>Erection of a jet mill in Clinton, USA</p> <p>Customer: NETZSCH Trockenmahltechnik GmbH<br/>Service: Structural calculation and design of a steel frame structure for a jet mill under earthquake loading acc. to ASCE 7-05, IBC 2009, AISC 360-05</p>                                      |
|    | <p><b>Plant Engineering – Support Structure for a Jet Mill</b><br/>Erection of a jet mill in Chester, USA</p> <p>Customer: NETZSCH Trockenmahltechnik GmbH<br/>Service: Structural calculation and design of a steel frame structure for a jet mill under earthquake loading acc. to IBC 2012, AISC 360-10</p>                                                 |
|   | <p><b>Plant Engineering – Support Structure for a Jet Mill and a Classifier Mill</b><br/>Erection of a jet mill and classifier mill in Loyalist, Canada</p> <p>Customer: NETZSCH Trockenmahltechnik GmbH<br/>Service: Structural calculation and design of steel frame structures for the two mills under earthquake loading acc. to NBCC 2015, CSA S16:19</p> |
|  | <p><b>Plant Engineering – Support Structure for Cross-flow Chipper</b><br/>Erection of a cross-flow chipper</p> <p>Customer: Xproducts Deutschland GmbH<br/>Service: Structural calculation and design of a steel frame structure for the cross-flow chipper under consideration of dynamic load impact acc. to DIN EN 1993-1</p>                              |
|  | <p><b>Plant Engineering – Support Structure for Conveyor Belt</b><br/>New development of a conveyor belt in Kentucky, USA</p> <p>Customer: BEUMER Group Austria GmbH<br/>Service: Structural calculation and design of lattice work structure loaded with conveyed material, wind, snow, ice and earthquake acc. to ASCE 7, AISC 360 ASD</p>                   |

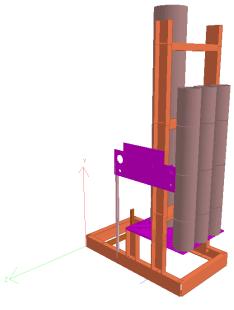
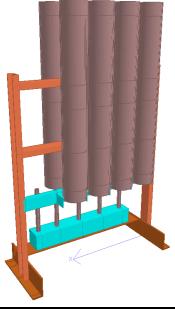
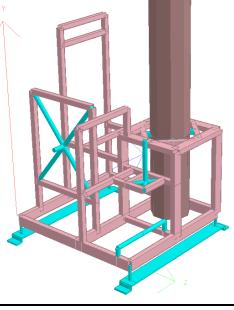
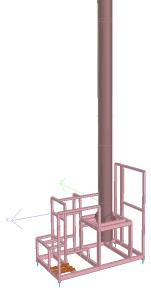
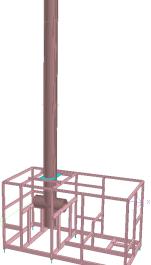




**Conversion to STAAD.Pro**

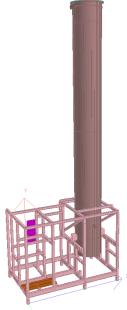
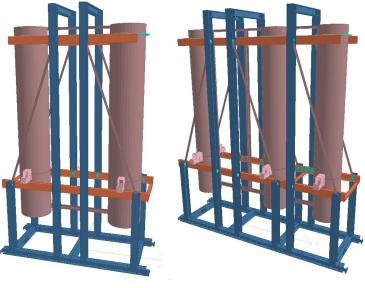
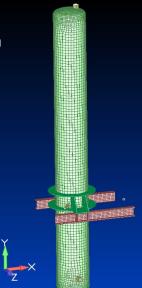
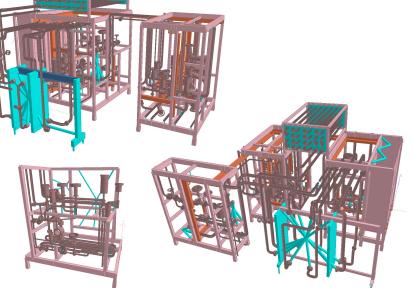



|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Decoking Plant in Mostorod</b><br/>     New development of a tower for a decoking plant in Egypt</p> <p>Customer: MS Müller &amp; Schmoranzer / Ruhrpumpen GmbH<br/>     Service: Compilation of a finite element (FE) model in STAAD.Pro (conversion from Antras) and technical advice for calculation and design of the tower acc. to ASCE and AISC ASD</p>                                                       |
|    | <p><b>Plant Engineering – Decoking Plant</b><br/>     New development of a double tower (height 38 m) on top of a support structure (height 60 m) for a decoking plant in Kuwait</p> <p>Customer: MS Müller &amp; Schmoranzer / Ruhrpumpen GmbH<br/>     Service: Compilation of a finite element (FE) model in STAAD.Pro (conversion from Antras) and technical advice for calculation and design of the tower acc. to ASCE and AISC ASD</p> |
|  | <p><b>Plant Engineering – Steel Structure</b><br/>     New development of a steel structure</p> <p>Customer: Andritz AG<br/>     Service: Creation of a FEA model in STAAD.Pro (conversion from SCIA)</p>                                                                                                                                                                                                                                     |
|  | <p><b>Plant Engineering – Steel Structure in Ichihara</b><br/>     New development of a steel structure</p> <p>Customer: Andritz AG<br/>     Service: Creation of a FEA model in STAAD.Pro (conversion from SCIA)</p>                                                                                                                                                                                                                         |
|  | <p><b>Plant Engineering – Steel Structure in Tokushima</b><br/>     New development of a steel structure consisting of several separate buildings</p> <p>Customer: Andritz AG<br/>     Service: Creation of a FEA model in STAAD.Pro (conversion from SCIA)</p>                                                                                                                                                                               |

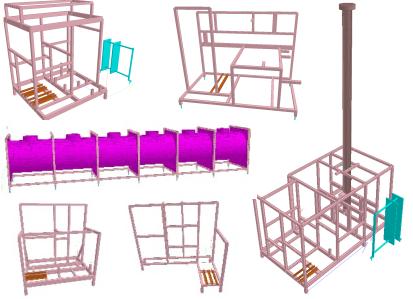
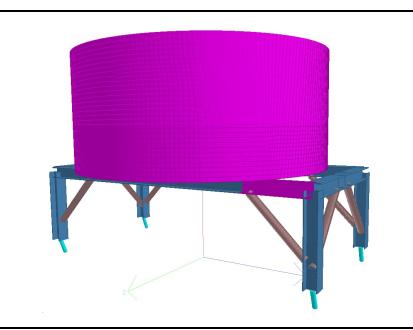
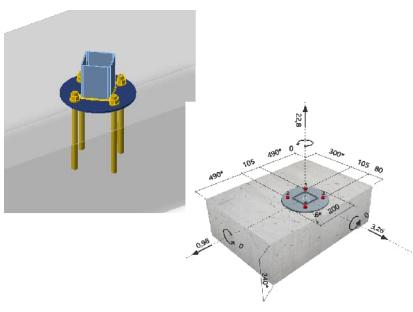
## Plant Engineering – Mechanical Engineering



### Components for Biogas and Power Plants

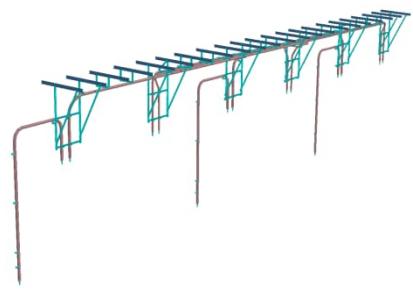
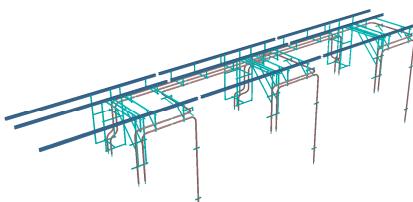





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Biogas Substrate Barrier</b><br/>     New development of a substrate barrier for containment of the dry substrate. Measurements approx. 2.5 m x 4.0 m</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Structural calculation of the substrate barrier acc. to EC3</p>                                                                                             |
|   | <p><b>Plant Engineering – Biogas Pump Brackets</b><br/>     Proof of brackets for installation of an eccentric spiral pump at the concrete wall of a fermenter</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Structural calculation/optimisation of the brackets in regards to carrying capacity and fatigue under consideration of the dynamic load acc. to DIN EN 1993 and VDI 2230</p> |
|  | <p><b>Plant Engineering – Biogas Substrate Bunker</b><br/>     New development of a hydraulic to open cover made of stainless steel for a substrate bunker. Measurements approx. 11.5m x 4.0 m x 1.6m</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Structural calculation of the cover in several opening positions acc. to EC3</p>                                                      |
|  | <p><b>Plant Engineering – Fermenter Cover Plate</b><br/>     New development of a cover plate loaded by 800 mbar overpressure</p> <p>Customer: Schmack Biogas GmbH<br/>     Service: Structural calculation of the cover plate acc. to EC3 and anchoring in concrete acc. to ETAG</p>                                                                                                              |
|  | <p><b>Plant Engineering – Catalyst for Gas Power Plants</b><br/>     New development of a catalyst module for gas power plants</p> <p>Customer: Johnson Matthey Catalysts (Germany) GmbH<br/>     Service: Structural calculation and design of a steel frame structure for catalysts under earthquake loading acc. to ASCE 7-05, IBC 2009, AISC 360-10</p>                                        |

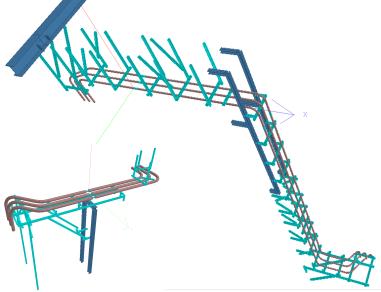
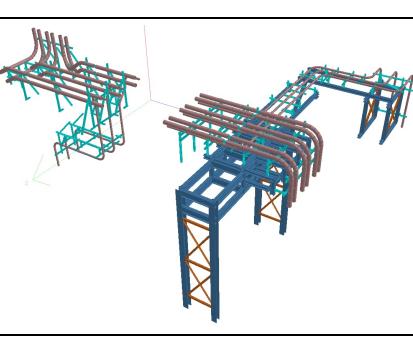
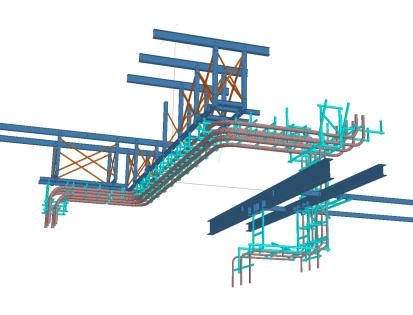
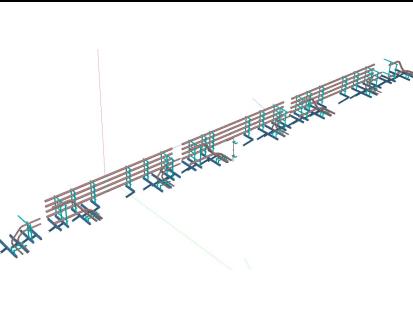
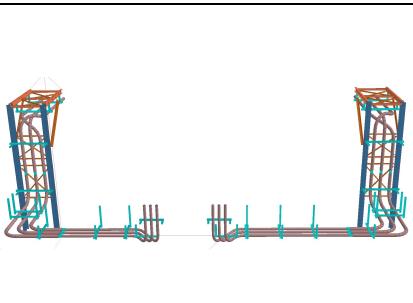





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Catalyst for Gas Power Plants</b><br/>New development of a catalyst module for gas power plants</p> <p>Customer: Johnson Matthey Catalysts (Germany) GmbH<br/>Service: Structural calculation and design of a structure consisting of several modules made of welded steel plates under earthquake loading acc. to DIN EN1998 and DIN EN 1993, analyses for different materials (structural steel, boiler steel, stainless steel)</p> |
|    | <p><b>Plant Engineering – Catalyst for Gas Power Plant TVA Paradise</b><br/>Enhancement of an existing Catalyst module for a new gas power plant</p> <p>Customer: Johnson Matthey Catalysts (Germany) GmbH<br/>Service: Structural calculation and design of a steel frame structure for catalysts under earthquake loading acc. to ASCE 7-05, IBC 2009, AISC 360-10</p>                                                                                        |
|   | <p><b>Plant Engineering – Catalyst for Gas Power Plant TVA Allen</b><br/>Enhancement of an existing Catalyst module for a new gas power plant</p> <p>Customer: Johnson Matthey Catalysts (Germany) GmbH<br/>Service: Structural calculation and design of a steel frame structure for catalysts under earthquake loading acc. to ASCE 7-10, IBC 2012, AISC 360-10</p>                                                                                           |
|  | <p><b>Plant Engineering – Catalyst for Gas Power Plant Fuji MPP Moka</b><br/>Enhancement of an existing Catalyst module for a new gas power plant in Japan</p> <p>Customer: Johnson Matthey Catalysts (Germany) GmbH<br/>Service: Structural calculation and design of a steel frame structure for catalysts under earthquake loading acc. to DIN EN 1993</p>                                                                                                   |
|  | <p><b>Plant Engineering – Washing-bay for Wind Power Station</b><br/>New development of a transport wagon for a washing-bay for parts of wind power stations</p> <p>Customer: Zippel GmbH<br/>Service: Structural calculation and design of the steel frame structure of the transport wagon as well as pre-design of the runway girders acc. to DIN EN 1993-1 and DIN 1993-3</p>                                                                               |

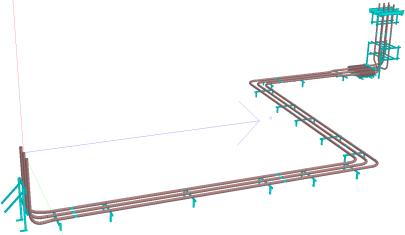
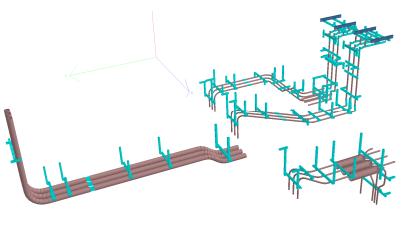
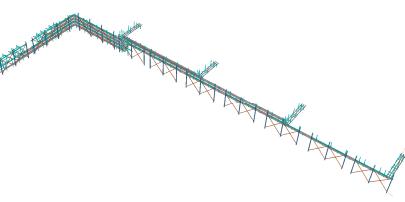
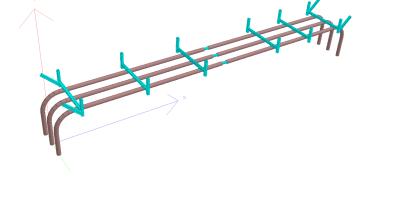
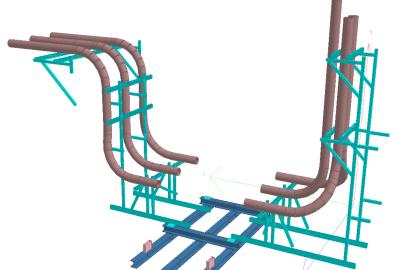




|                                                                                    |                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Plant Engineering – Alteration Power Plant Würzburg</b><br/>           Reorganisation of the former Würzburger coal power plant into a modern gas and steam power plant</p> <p>Customer: W + G Ingenieurgesellschaft mbH<br/>           Service: Structural calculation and check of a flue gas duct with overpressure</p>    |
|   | <p><b>Plant Engineering – Moneypoint Generating Station</b><br/>           Alteration of a power plant (915 MW) in Ireland</p> <p>Customer: W + G Ingenieurgesellschaft mbH / Lurgi Lentjes<br/>           Service: Structural calculation and check of a flue gas duct</p>                                                         |
|  | <p><b>Plant Engineering – Maasvlakte Power Plant 3</b><br/>           New development of two assembly frames for transport, assembly and revision of large valves</p> <p>Customer: Lisege SE / E.ON Kraftwerke AG<br/>           Service: Structural calculation acc. to DIN 18800 and workshop drawings of the assembly frames</p> |

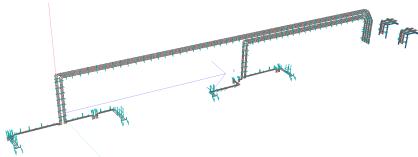
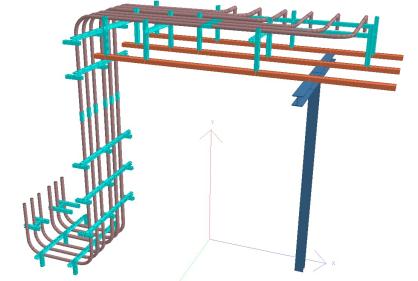
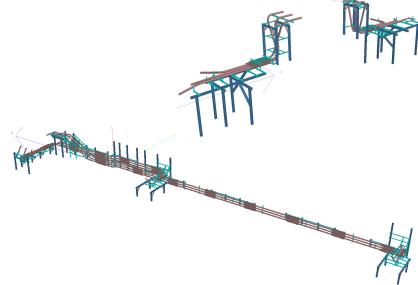
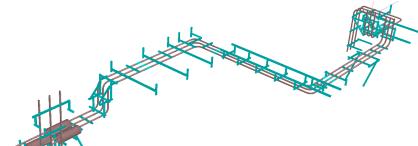
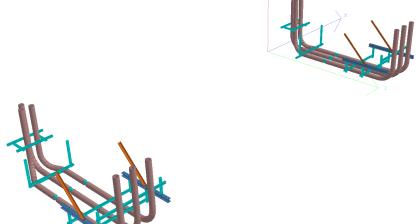



## Support Frames and Racks

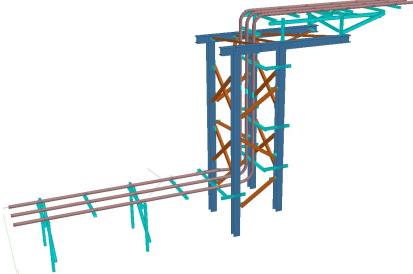
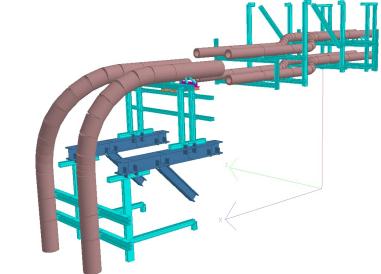
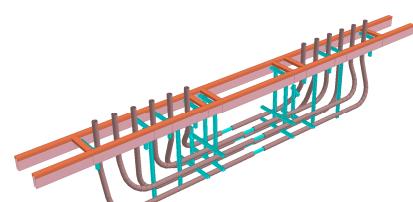
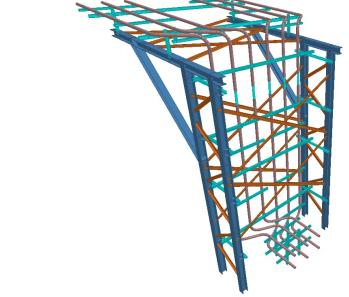
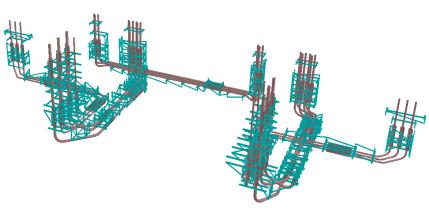
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br><small>Bild: Hammelmann GmbH</small> | <p><b>Plant Engineering – High Performance Pumps for Offshore Use</b><br/>           New development of two frame structures for transport, assembly and operation of high-performance pumps at high seas and on oil production vessels</p> <p>Customer: Hammelmann GmbH / MODEC &amp; TOYO Offshore Production<br/>           Service: Structural calculation and connection design acc. to AISC 360, ASCE 7-05</p> |
|                                          | <p><b>Plant Engineering – High Performance Pumps for Modec Uaru</b><br/>           New development of frame for transport, assembly and operation of a high-performance pump for Modec Uaru, Guyana</p> <p>Customer: Hammelmann GmbH<br/>           Service: Structural calculation and connection design acc. to AISC 360, ASCE 7</p>                                                                               |

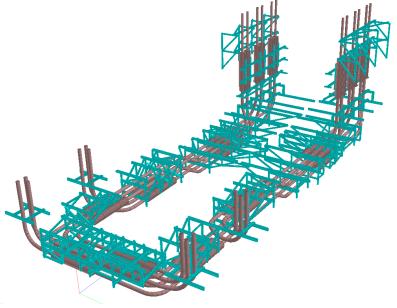


|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – High performance Pumps for Buzios</b><br/>     New development of two base frames and a sound protection hood for high performance pumps in Santos Basin, Brazil</p> <p>Customer: Hammelmann GmbH<br/>     Service: Structural calculation and connection design acc. to ASCE 7 und AISC 360 for transport, assembly and operation</p>                            |
|    | <p><b>Plant Engineering – High performance Pumps for Raia</b><br/>     New development of two base frames and a sound protection hood for high performance pumps for Raia, Brazil</p> <p>Customer: Hammelmann GmbH<br/>     Service: Structural calculation and connection design acc. to ASCE 7, API RP 2A WSD and AISC (9<sup>th</sup> edition) for transport, assembly and operation</p> |
|   | <p><b>Plant Engineering – TCO Steel Frames</b><br/>     New development of five machine frame structures for operation and during sea transport from Korea to Kazakhstan</p> <p>Customer: Siemens AG, Dresser-Rand Business Technology<br/>     Service: Structural calculation and design of steel frames acc. to ASCE 7-05 and AISC 360</p>                                               |
|  | <p><b>Plant Engineering – Steel Frames for Lubrication System</b><br/>     New development of a lubrication system on the boom of an offshore crane</p> <p>Customer: Baier + Köppel GmbH + Co. KG<br/>     Service: Structural calculation and design of a steel frame loaded by ship movement and boom tilt acc. to offshore guideline DNVGL-ST-0378 and DIN EN 13001</p>                  |
|  | <p><b>Plant Engineering – Steel Frame for Accumulator Unit, Oman</b><br/>     New development of an accumulator unit in Oman</p> <p>Customer: HYDAC Technology GmbH<br/>     Service: Structural calculation and design of a steel frame anchored in the foundation under wind load acc. to ASCE 7-05, AISC 360-10 and ETAG</p>                                                             |






|                                                                                     |                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Steel Frame for Accumulator Unit, USA</b><br/>       New development of an accumulator unit in Brandenburg, USA</p> <p>Customer: HYDAC Technology GmbH<br/>       Service: Structural calculation and design of a steel frame anchored in the foundation under earthquake loading acc. to ASCE 7-10 and AISC 360-16</p>      |
|    | <p><b>Plant Engineering – Steel Skid Bladder Accumulator, India</b><br/>       New development of a bladder accumulator in Dolvi, Raigad District, Maharashtra, India</p> <p>Customer: HYDAC Technology GmbH<br/>       Service: Structural calculation and design of a steel frame under seismic load acc. to Indian standards IS 1893 and IS 800</p> |
|   | <p><b>Plant Engineering – Steel Frames for Varidox-H</b><br/>       New development and erection of a Varidox-H in Korea</p> <p>Customer: GEA Diessel GmbH / GEA TDS GmbH<br/>       Service: Structural calculation and design of a steel frame anchored in the foundation under earthquake loading acc. to UBC 1997, EN 1993-1 and ETAG</p>          |
|  | <p><b>Plant Engineering – Rack for Column in Brewery</b><br/>       New development and erection of a rack with column in Budapest</p> <p>Customer: GEA Brewery Systems GmbH<br/>       Service: Structural calculation and design of a rack as well as the brackets of the column under earthquake loading acc. to EN 1998-1</p>                      |
|  | <p><b>Plant Engineering – Rack for Column in Brewery</b><br/>       New development and erection of a rack with column in Phoenix, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>       Service: Structural calculation and design of a rack as well as the brackets of the column under earthquake loading acc. to ASCE 7 and IBC 2012</p>        |

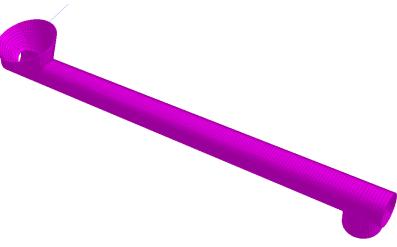
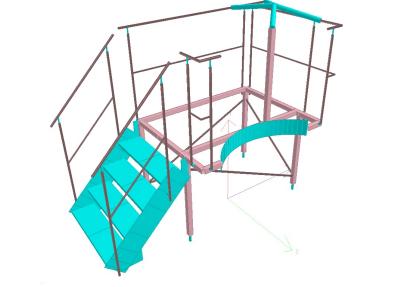
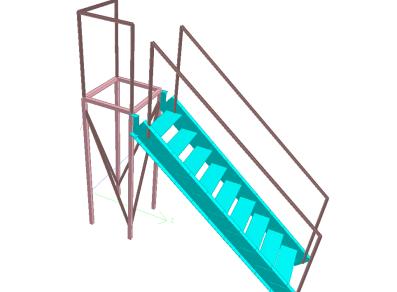
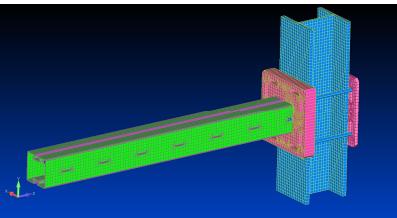





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Rack for Column in Brewery</b><br/>     New development and erection of a rack with column in Barranquilla, Columbia</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of a rack as well as the brackets of the column under earthquake loading</p>                                                                                                    |
|    | <p><b>Plant Engineering – Skid for CO<sub>2</sub>-Dryer/Purifier in USA</b><br/>     New development and erection of skids with dryer DN800 and purifier DN700 in Golden, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation, design and optimisation of skids under earthquake loading acc. to ASCE 7-22</p>                                                                  |
|   | <p><b>Plant Engineering – Skid for CO<sub>2</sub>-Dryer/Purifier in USA</b><br/>     New development and erection of skid with dryer and purifier DN350 in Fort Collins, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of a skid acc. to AISC 360 under earthquake and wind loading acc. to ASCE 7-22 as well as anchorage acc. to ACI 318</p>                 |
|  | <p><b>Plant Engineering – CO<sub>2</sub>- Dryer/Purifier in Uzbekistan</b><br/>     New development of a skid with dryer and purifier DN350 in Tashkent, Uzbekistan</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of the vessels acc. to AD2000 Merkblätter and of the skid acc. to EN 1993-1 under seismic load acc. to UBC 1997 as well as anchorage acc. to EN 1992-4</p> |
|  | <p><b>Plant Engineering – Several Racks for Brewery</b><br/>     New development and erection of racks for piping and heat exchangers, etc. in Escondido, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of racks under earthquake loading acc. to ASCE 7-22 and AISC 360-16</p>                                                                                          |

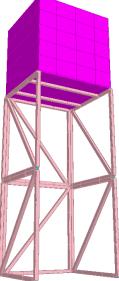
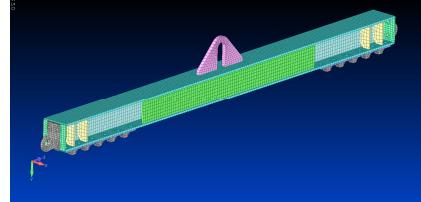





|                                                                                    |                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Plant Engineering – Several Racks for Brewery</b><br/>     New development and erection of racks for piping and heat exchangers, etc. in Gornji, Slovenia</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of racks under earthquake loading acc. to EN 1998-1 and EN 1993-1</p>  |
|   | <p><b>Plant Engineering – Transport Rack for Brewery Vessel</b><br/>     New development of a transport rack for a cereal cooker in a brewery in Santo Domingo</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of a transport rack acc. to DIN EN 1993-1</p>                           |
|  | <p><b>Plant Engineering – Anchorages for Racks and Tanks</b><br/>     New development of racks and tanks for a brewery in Montreal, Canada</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of subsequent anchorages for racks and tanks under seismic loading acc. to CSA A23.3-14</p> |






## Electrical Facilities

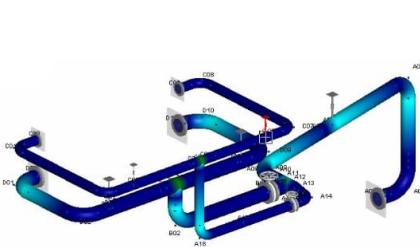
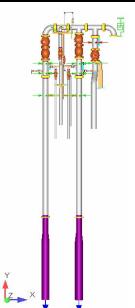
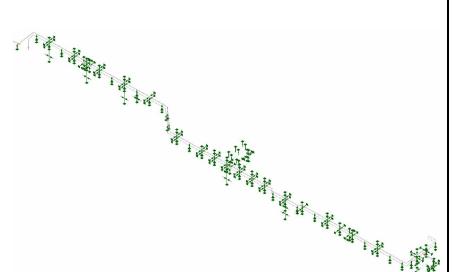
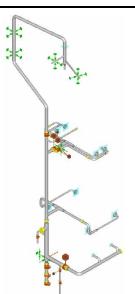
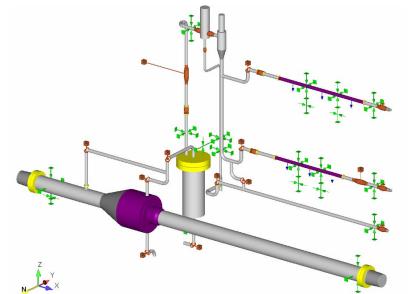

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Plant Engineering – Transformers 380/220KV Lavorgo</b><br/>     New development of 3 transformers 380/220KV incl. resin jacketed bus bars in Switzerland</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Seismic calculation (response spectrum method) of the fastening structures and the resin jacketed busbars acc. to IEC 62271-207</p>    |
|  | <p><b>Plant Engineering – Transformers 380/220kV UW Châtelard</b><br/>     New development of transformers 380/220KV incl. resin jacketed bus bars in Switzerland</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Seismic calculation (response spectrum method) of the fastening structures and the resin jacketed busbars acc. to IEC 62271-207</p> |

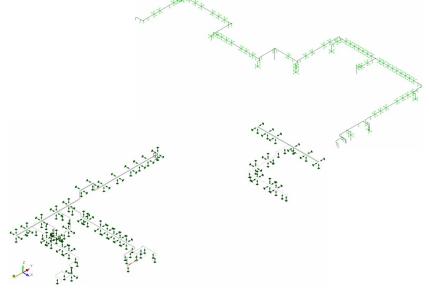
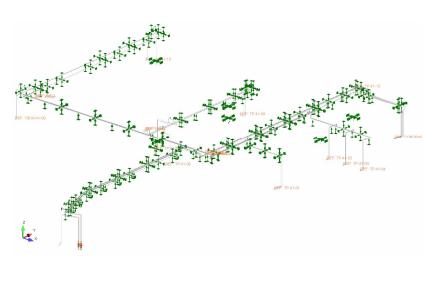
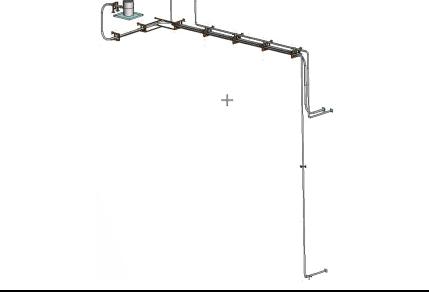
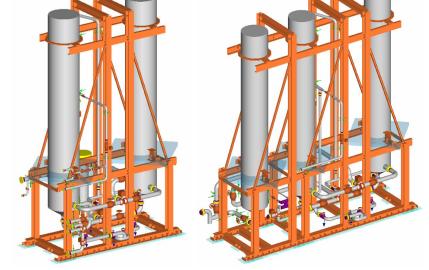
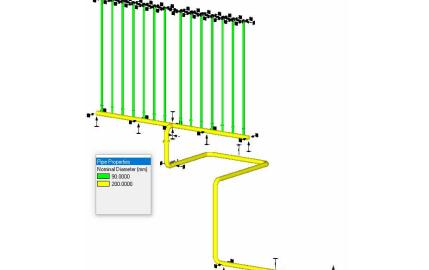
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Transformers 12kV Formosa</b><br/>     New development of transformers 12kV/1250A &amp; 12kV/3150A incl. resin jacketed bus bars in Taiwan</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Seismic calculation (quasi-static) of the fastening structures and the resin jacketed busbars</p>                                  |
|    | <p><b>Plant Engineering – Transformers 24kV Full Power Energy</b><br/>     New development of transformers 24kV / 2000 A / 2x4000 A incl. resin jacketed bus bars in Taiwan</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p>      |
|   | <p><b>Plant Engineering – Transformers 17,5kV Formosa Refinery</b><br/>     New development of transformers 17.5kV / 2x2000 A / 2x4000 A incl. resin jacketed bus bars in Taiwan</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p> |
|  | <p><b>Plant Engineering – Transformers 36kV Siemens</b><br/>     New development of transformers 36kV / 5000 A incl. resin jacketed bus bars in Laufenburg, Switzerland</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p>          |
|  | <p><b>Plant Engineering – Transformers 36kV</b><br/>     New development of transformers 36kV / 2500 A incl. resin jacketed bus bars in Oman</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to IBC 2009 and ASCE 7-05</p>      |

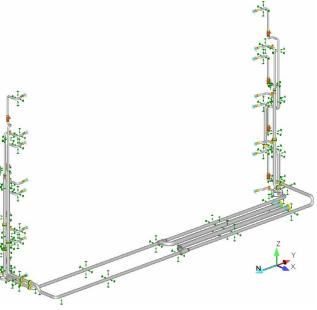
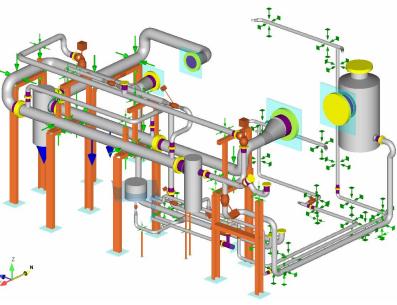
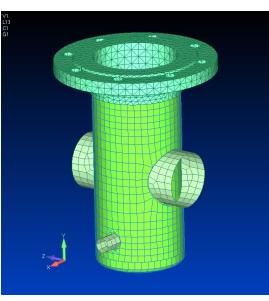
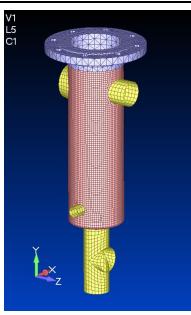




|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Transformers 36kV</b><br/>New development of transformers 36kV / 2000 A / 4000 A incl. resin jacketed bus bars in Peru</p> <p>Customer: MGC Moser-Glaser AG<br/>Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p>                                            |
|    | <p><b>Plant Engineering – Transformers 17,5kV</b><br/>New development of transformers 17,5kV / 1250 A / 4500 A incl. resin jacketed bus bars in Wägital, Schweiz</p> <p>Customer: MGC Moser-Glaser AG<br/>Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p>                            |
|   | <p><b>Plant Engineering – Transformers 24kV</b><br/>New development of transformers 24kV / 2500 A incl. resin jacketed bus bars in Gaston, USA</p> <p>Customer: MGC Moser-Glaser AG<br/>Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to ASCE 7-16</p>                            |
|  | <p><b>Plant Engineering – Transformers 36kV</b><br/>New development of transformers 36kV / 2000 A incl. resin jacketed bus bars in Belle Chasse, USA</p> <p>Customer: MGC Moser-Glaser AG<br/>Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to ASCE 7-16</p>                      |
|  | <p><b>Plant Engineering – Transformers 17,5kV</b><br/>New development of transformers 17,5kV / 6300 A incl. resin jacketed bus bars in La Bâtieaz, Schweiz</p> <p>Customer: MGC Moser-Glaser AG<br/>Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to ESTI 248, version 0415 d</p> |

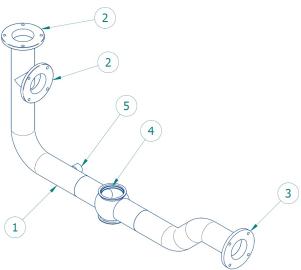


|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Transformers 17,5kV</b><br/>       New development of transformers 17,5kV / 2000 A incl. resin jacketed bus bars at Robert Kerr Dam, USA</p> <p>Customer: MGC Moser-Glaser AG<br/>       Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to ASCE 7-16 incl. anchorages acc. to ACI 318-14</p>        |
|    | <p><b>Plant Engineering – Transformers 17,5kV</b><br/>       New development of transformers 17,5kV / 1250 A, 1600 A incl. resin jacketed bus bars in Leibstadt, Schweiz</p> <p>Customer: MGC Moser-Glaser AG<br/>       Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to KTA 2201.4 as well as GKSL-Nr. L1000</p>           |
|   | <p><b>Plant Engineering – Transformers 123kV</b><br/>       New development of transformers 123kV / 3150 A incl. resin jacketed bus bars in Boston, USA</p> <p>Customer: MGC Moser-Glaser AG<br/>       Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to ASCE 7-16</p>                                                       |
|  | <p><b>Plant Engineering – Cube Incinerator 12kV, Taiwan</b><br/>       New development of the Taiwan Cube Incinerator 12kV / 1600A / 1000A incl. resin jacketed bus bars</p> <p>Customer: MGC Moser-Glaser AG<br/>       Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading</p>                                                        |
|  | <p><b>Plant Engineering – Hyosung S-Oil Shaheen, South Korea</b><br/>       Assembly of resin jacketed bus bars 36kV / 4000A</p> <p>Customer: MGC Moser-Glaser AG<br/>       Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to IBC and ASCE 7, Occupancy Category IV as well as design of the anchorage acc. to EN 1992-4</p> |

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Plant Engineering – Duresca Busbars in Swansea, Wales</b><br/>         Steel support structure for resin jacketed bus bars 36kV / 4000A</p> <p>Customer: MGC Moser-Glaser AG<br/>         Service: Structural calculation and design of the steel support structure under wind, snow and seismic loading acc. to EN 1991-1 and EN 1998-1 as well as design of the anchorage acc. to EN 1992-4</p> |
|    | <p><b>Plant Engineering – Generator Busduct KW Ritom G1, Switzerland</b><br/>         Assembly of resin jacketed bus bars 17,5kV / 3150A / 6300A</p> <p>Customer: MGC Moser-Glaser AG<br/>         Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to SIA 261</p>                                                      |
|   | <p><b>Plant Engineering – Duresca Busbars for Howard, Panama</b><br/>         Assembly of resin jacketed bus bars 36kV / 2500A</p> <p>Customer: MGC Moser-Glaser AG<br/>         Service: Structural calculation and design of the fastening structures and the resin jacketed busbars under seismic loading acc. to REP 2021</p>                                                                       |
|  | <p><b>Plant Engineering – Duresca Busbars in Upper Boat, Wales</b><br/>         Steel support structure for resin jacketed bus bars</p> <p>Customer: MGC Moser-Glaser AG<br/>         Service: Structural calculation and design of the steel support structure under wind and snow load acc. to EN 1991-1 as well as design of the anchorage acc. to EN 1992-4</p>                                     |
|  | <p><b>Plant Engineering – Inch Cape Offshore Wind Farm in GB</b><br/>         New development of Moray West Offshore Wind Farm, North Sea, GB</p> <p>Customer: MGC Moser-Glaser AG<br/>         Service: Structural calculation and optimisation of the fastening structures as well as determination of support loads for wind, ice and offshore loading</p>                                           |

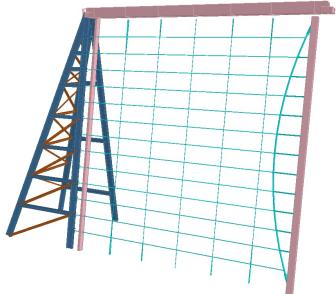





|                                                                                   |                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Plant Engineering – Changhua Offshore Wind Farm in Taiwan</b><br/>     New development of the Greater Changhua Offshore Wind Farm, Taiwan</p> <p>Customer: MGC Moser-Glaser AG<br/>     Service: Structural calculation and optimisation of the fastening structures as well as determination of support loads for seismic loading acc. to IEEE 693</p> |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|






## Miscellaneous





|                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <p><b>Plant Engineering – Dust Explosion in Spiral Conveyors</b><br/>     New development of spiral conveyors for VetterTec</p> <p>Customer: Ilchmann Fördertechnik GmbH<br/>     Service: Analysis of enclosures for spiral conveyors in regards to blast pressure incl. determination of section forces at the flanges</p>                         |
|  | <p><b>Plant Engineering – Platform for Brewery</b><br/>     New development and erection of a platform</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of a platform with roller conveyor</p>                                                                                                          |
|  | <p><b>Plant Engineering – Platform in Brewery</b><br/>     New development and erection of a platform in Chungju, South Korea</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and design of a platform under seismic load acc. to UBC 1997 und EC3</p>                                                            |
|  | <p><b>Plant Engineering – Suspended Structure with Special Profiles</b><br/>     New development of a plant in Linde, Texas</p> <p>Customer: MÜPRO Services GmbH<br/>     Service: Structural calculation and design of special profiles to be clamped to the main steel structure under single loads and wind acc. to ASCE 7-10 and AISC 360-10</p> |


|                                                                                   |                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <b>Plant Engineering – Emergency Shower</b><br>New development of an emergency shower for facilities with hazardous substances<br><br>Customer: Haws AG<br>Service: Structural calculation and design of the load carrying frame of an outdoor emergency shower acc. to AISC 360-16 as well as anchorage acc. to ETAG |
|  | <b>Plant Engineering – Lifting Beam</b><br>Check of an existing lifting beam for lifting of pressure vessels<br><br>Customer: Danz GmbH<br>Service: Structural calculation and check of the lifting beam acc. to DIN EN 13155                                                                                         |

## Plant Engineering – Pipeline Construction


|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Pipeline Construction – PET Plant Brazil</b><br/>     Calculation of 70 pipeline systems (200 isometric views) (operating temperature of 50 – 350°C, pressure 0 – 4 bar)</p> <p>Customer: Bühler AG, Schweiz<br/>     Service: Calculation of pressure, weight and temperature loads. Check of pipe stress acc. to ASME B31.3 as well as the loads at the nozzle. Determination of the required pipe supports and variable spring hangers</p> |
|   | <p><b>Pipeline Construction – Fire Main in Nuclear Power Plant Grohnde</b><br/>     Calculation of a fire main incl. support under loading of airplane crash and under maintenance</p> <p>Customer: PreussenElektra GmbH<br/>     Service: Structural calculation and design of the support acc. to DIN EN 1993 and of the pipe acc. to DIN EN 13480 based on response spectra for the building</p>                                                 |
|  | <p><b>Pipeline Construction – Plant in Tadcaster, UK</b><br/>     Calculation of a steam pipe with condensate return (operation temperature 180°C, pressure 10 bar)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipe under pressure, self-weight and temperature load acc. to DIN EN 13480</p>                                                                                              |
|  | <p><b>Pipeline Construction – Brewery in Toronto, Canada</b><br/>     Calculation of a pipe for a Millstar 10 t pump (operation temperature 85°C, pressure 10 bar)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipe under pressure, self-weight, temperature and seismic load acc. to ASME B31.3</p>                                                                                        |
|  | <p><b>Pipeline Construction – Brewery in Chilliwack, Canada</b><br/>     Calculation of a pipe for wort aeration (operation temperature 150°C, pressure 7 bar)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipe under pressure, self-weight, temperature, wind and seismic load acc. to ASME B31.3</p>                                                                                      |

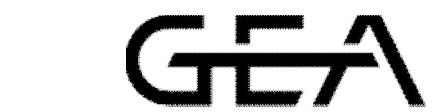
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Pipeline Construction – Brewery in Montreal, Canada</b><br/>     Calculation of a steam and a condensate pipe line (operating temperature of 180°C, pressure 10 bar)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipe under pressure, dead load and temperature as well as earthquake acc. to ASME B31.3 und NBCC 2010</p>                                                 |
|    | <p><b>Pipeline Construction – Brewery in Chadyschensk, Russia</b><br/>     Calculation of steam and condensate pipe lines (operating temperature of 184°C, pressure 8 bar)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipes under pressure, dead load and temperature as well as wind snow and earthquake acc. to EN 13480 Part 3 - 2017, RU SP 20.13330 and UBC 1997</p>       |
|   | <p><b>Pipeline Construction – Brewery in Lublin, Poland</b><br/>     Calculation of a support structure with pipe lines for draft and malt (operating temperature of 75°C, pressure 2 bar, dynamic draft transport)</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipes and supports under pressure, dead load and temperature as well as wind and snow acc. to EN 1991-1 (NA)</p> |
|  | <p><b>Pipeline Construction – Piping for CO2-Dryer/Purifier</b><br/>     New development and erection of dryer DN800 and purifier DN700 in Golden, Colorado, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipes acc. to ASME B31.3 under earthquake load acc. to ASCE 7-22</p>                                                                                                |
|  | <p><b>Pipeline Construction – Plant in Lincoln, USA</b><br/>     Calculation of an anti-icing system (operation temperature -20 to 500°C, pressure 25 bar)</p> <p>Customer: TB Freyer GmbH / Siemens Energy, Inc.<br/>     Service: Structural calculation and proof of the pipe and flanges under pressure, self-weight, temperature, wind, snow and seismic load acc. to ASME B31.1</p>                                                |

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <p><b>Pipeline Construction – Plant in Lincoln, USA</b><br/>     Calculation of heat exchange supply and drain piping (operation temperature -10 to 90°C, pressure 12 bar)</p> <p>Customer: TB Freyer GmbH / Siemens Energy, Inc.<br/>     Service: Structural calculation and proof of the pipe and flanges under pressure, self-weight, temperature, wind, snow and seismic load acc. to ASME B31.1</p>      |
|    | <p><b>Pipeline Construction – CO<sub>2</sub> Compressor Unit in USA</b><br/>     Calculation of pipe lines of a compressor unit incl. two cyclone separators in Glendale, Arizona, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the pipes and cyclone separators under pressure, dead load and temperature as well as earthquake acc. to ASME B31.3</p> |
|   | <p><b>Pipeline Construction – Vibration Examination at a CO<sub>2</sub> Compressor Unit</b><br/>     Subsequent dynamic examination of an existing Compressor unit in Glendale, Arizona, USA</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Frequency analysis and optimisation of the entire structure acc. to ASME B31.3 based on the measurements of arising vibrations</p>                    |
|  | <p><b>Pipeline Construction – Product Trap in Montreal, Canada</b><br/>     Calculation of a product trap integrated in a pipe system</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the product trap under pressure, weight and temperature loads as well as earthquake acc. to ASME B31.3</p>                                                               |
|  | <p><b>Pipeline Construction – De-aeration Lantern in Montreal, Canada</b><br/>     Calculation of a de-aeration lantern integrated in a pipe system</p> <p>Customer: GEA Brewery Systems GmbH<br/>     Service: Structural calculation and proof of the de-aeration lantern under pressure, weight and temperature loads as well as earthquake acc. to ASME B31.3</p>                                          |

|                                                                                   |                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Pipeline Construction – Pipeline Components</b><br/>Calculation of single pipeline components</p> <p>Customer: Krones AG<br/>Service: Structural calculation and proof of the pipeline components under pressure and temperature loads acc. to ASME B31.3</p> |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Glass Structures

**Glass Structures – Visual Mock-Up**


New development of a Visual Mock-Up for a pre-stressed glass facade (measurements approx. b=26m and h=20m)

Customer: Gartner Steel and Glass GmbH

Service: Structural calculation of the steel and cable structure as well as design of the steelwork acc. to BS EN 1993-1

## Customer Index

ABB Schweiz AG  
 Andritz AG  
 Babcock Noell GmbH (heute Bilfinger Noell GmbH)  
 Baier + Köppel GmbH & Co. KG (BEKA)  
 BEUMER Group Austria GmbH  
 Bühler AG, Schweiz  
 Canberra GmbH  
 Danz GmbH  
 Deutsche Telekom AG  
 Dürr Systems GmbH  
 EWN Entsorgungswerk für Nuklearanlagen GmbH  
 Eisenmann  
 Fives-Cail Babcock  
 Gartner Steel and Glass GmbH  
 GEA Brewery Systems GmbH  
 GEA Diessel GmbH / GEA TDS GmbH  
 Gesellschaft für nukleares Recycling mbH (GNR)  
 Hammelmann GmbH  
 Haws AG  
 HYDAC Technology GmbH  
 ICW GmbH  
 Ilchmann Fördertechnik GmbH  
 Ingenieurbüro Ruf  
 Johnson Matthey Catalysts (Germany) GmbH  
 Krones AG  
 Lisege SE  
 Luft- und Thermotechnik Bayreuth GmbH  
 MAX STREICHER GmbH & Co. KG  
 MGC Moser-Glaser AG  
 Michaelis GmbH&Co. KG  
 MS Müller & Schmoranzer / Ruhrpumpen GmbH  
 MÜPRO Services GmbH  
 NETZSCH Trockenmahltechnik GmbH  
 NKM Noell Special Cranes GmbH  
 Ponndorf Anlagenbau GmbH  
 PreussenElektra GmbH  
 Ramboll (Denmark)  
 RCE GmbH  
 RWE Power AG  
 Schmack Biogas GmbH  
 Siemens AG  
 Siloxa Engineering AG  
 Stadt Würzburg  
 Steinecker GmbH  
 TB Freyer GmbH  
 Uniper Nuclear Services GmbH (früher Uniper Anlagenservice GmbH bzw. E.ON Anlagenservice)  
 URT Umwelt- und Recyclingtechnik GmbH  
 W + G Ingenieurgesellschaft mbH  
 Xproducts Deutschland GmbH  
 Zippel GmbH

